

SHARADA VIDYANIKETHANA PUBLIC SCHOOL & PU COLLEGE

PRATIBHA PRAVEENA SCHOLARSHIP EXAMINATION

INSTRUCTIONS

- 1. The booklet is your Question Paper. Do not break the seal of this booklet before being instructed to do so by the invigilator.
- 2. The question paper Series CODE is printed on the right hand top corner of this sheet.
- 3. Blank spaces and blank pages are provided in the question paper for your rough work. No additional sheets will be provided for your rough work.
- 4. Blank papers, clipboards, log tables, slide rules, calculators, camera, cellular phones, papers and electronic gadgets are **NOT** allowed inside the examination hall.
- 5. The answer sheet, a machine readable Optical Mark Recognition (OMR), is provided separately.
- 6. DO NOT TAMPER WITH/MUTILATE THE OMR OR THE BOOKLET
- 7. On breaking the seal of the booklet check that it contains 9 pages and all the 90 questions and corresponding answer choices are legible.
- A candidate has to write his/ her answer in the OMR sheet by appropriate bubble with the help of Black/Blue ball point pen as the correct answer (s) of the question attempted.
- 9. Write all information and sign in the box provided on part of the **OMR**.
- The duration of test is 2 Hours and question paper contains 90 questions. The Max marks are 360. Question Paper consists of 4 parts (Physics, Chemistry, Mathematics and Biology). Physics, Chemistry , Biology consists of 20 questions and Mathematics consists of 30 questions.
- 11. All questions are multiple choice questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
- 12. Each correct answer carries **4 Mark**, while **1 mark will be deducted for every wrong answer**. [Guessing of answer is harmful]

SHARADA VIDYANIKETHANA PUBLIC SCHOOL & PU COLLEGE

Devinagara, Talapady , Mangaluru – 23

PRATIBHA PRAVEENA EXAM 2018 - 19

- Light is travelling from medium A to medium B. Where refractive index of B is 1.3. For some angle of incidence light is completely reflected back to the same medium. The refractive index of A is
 - a. 1 b. 1.2 c. 1.7 d. 1.25
- 2. In the diagram image and object are in the same place. Find focal length of convex mirror

a. 20 cm b. 10 cm c. 30 cm d. 5 cm

3. When two parallel conductors carrying current is opposite direction. They will

a. Attract each other

c. Total force between them zero

- b. Repel each other
- 4. In the below diagram magnetic field may be zero at,

c. C

a. both B and C

- 5. Inductance of Inductor depends on
 - a. Applied voltage

a. A

- b. Current flowing through the inductor
- c. Frequency of applied signal
- d. None of the above
- 6. Displacement of particle is given by the equation x = 5t + 6. What is its acceleration
 - a. Zero b. 5 m/s^2 c. 6 m/s^2 d. 30 m/s^2

Total force between

d. None of these

- 7. Two bodies of masses 1 kg and 2 kg have equal momentum. Then the ratio of their kinetic energy is
 - a. 1:3 b. 1:1 c. 2:1 d. 3:1

8. The total current supplied to the circuit by the battery is

K.E of the body becomes half its original value

a. 5 m	b. 2.5 m	c. 1.5 m	d. 0.5 m
17. Value of gravitat	ional constant		
a. 9.8 m/s ²		c. 6.67 x 10 ⁻¹¹ m	³ Kg ⁻¹ s ⁻²
b. 9.8 m/s		d. 6.67 x 10 ⁻¹¹ N	Kg ² s ⁻¹
18.In AC generator	, current is maximum	when angle between th	ne magnetic field and
plane containing	the loop is		
a. 90	b. 0	c. 45	d. 60
19.A body falling fr	rom rest describes dis	stance s_1, s_2 and s_3 in 1^{st}	,2 nd and 3 rd second.
Then the ratio of	s ₁ : s ₂ : s ₃ is		
a. 1:4:9	b. 1:3:5	c. 1:2:3	d. 1:2:4
20. Wire is bent into	a circular loop and ba	attery is connected at A	and B ends as shown
in the figure. The	e ratio of I_1 and I_2 is		
		O II2	
a. 3:1	b. 2:1	c. 1:1	d. 4:1
			on enthalpies are
21. Find the formula	of halide of a metal w	nose successive ionization	
x , 2x , 5x , 100 x	of halide of a metal w x kJ mol ⁻¹ respectively	nose successive ionization	
21.Find the formula x , 2x , 5x , 100 : a. MX	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂	c. MX ₃	d. M ₂ X
 21. Find the formula x , 2x , 5x , 100 x a. MX 22. An element, X has 	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop	c. MX ₃	d. M ₂ X
 21. Find the formula x , 2x , 5x , 100 x a. MX 22. An element, X ha ²⁰⁰X:90% 	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop ¹⁹⁹ X : 8.1	c. MX_3 ic composition: 0% $202X$	d. M₂X : 2.0%
 21. Find the formula x , 2x , 5x , 100 x a. MX 22. An element, X ha ²⁰⁰X:90% The weighted av 	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop ¹⁹⁹ X : 8.1 erage atomic mass of	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e	d. M ₂ X : 2.0% element X is closest to
21. Find the formula x, 2x, 5x, 100 \times a. MX 22. An element, X ha 200 X:90% The weighted av a. 201 amu	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop ¹⁹⁹ X : 8.1 erage atomic mass of b. 202 amu	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu	 d. M₂X : 2.0% element X is closest to d. 200 amu
21. Find the formula x , 2x , 5x , 100 x a. MX 22. An element, X ha $^{200}X:90\%$ The weighted av a. 201 amu 23. Which of the follo	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop ¹⁹⁹ X : 8. erage atomic mass of b. 202 amu owing molecules has t	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu he maximum dipole mon	 d. M₂X : 2.0% :lement X is closest to d. 200 amu nent?
21. Find the formula x, 2x, 5x, 100 x a. MX 22. An element, X ha $^{200}X:90\%$ The weighted av a. 201 amu 23. Which of the follo a. CO ₂	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop ¹⁹⁹ X : 8. erage atomic mass of b. 202 amu owing molecules has th b. CH ₄	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu he maximum dipole mon c. NH ₃	d. M ₂ X : 2.0% element X is closest to d. 200 amu hent? d. NF ₃
21. Find the formula x, 2x, 5x, 100 x a. MX 22. An element, X ha 200 X:90% The weighted av a. 201 amu 23. Which of the follo a. CO ₂ 24. Which process of	of halide of a metal w x kJ mol ⁻¹ respectively b. MX ₂ as the following isotop ¹⁹⁹ X : 8. erage atomic mass of b. 202 amu owing molecules has th b. CH ₄ f purification is represe	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu he maximum dipole mon c. NH ₃ ented by the following sc	d. M ₂ X : 2.0% element X is closest to d. 200 amu hent? d. NF ₃ heme?
21. Find the formula x, 2x, 5x, 100 x a. MX 22. An element, X ha $^{200}X:90\%$ The weighted av a. 201 amu 23. Which of the follo a. CO ₂ 24. Which process of Ti(impure) + 2I	of halide of a metal w x kJ mol ⁻¹ respectively b. MX_2 as the following isotop ¹⁹⁹ X : 8. erage atomic mass of b. 202 amu owing molecules has th b. CH ₄ f purification is represe ² $\xrightarrow{250^{\circ}C}$ TiI ₄ $\xrightarrow{1400^{\circ}C}$ Ti(pur	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu he maximum dipole mon c. NH ₃ ented by the following sc	d. M ₂ X : 2.0% element X is closest to d. 200 amu hent? d. NF ₃ heme?
21. Find the formula x, 2x, 5x, 100 x a. MX 22. An element, X ha 200 X:90% The weighted av a. 201 amu 23. Which of the follo a. CO ₂ 24. Which process of Ti(impure) + 2I a. Cupellation	of halide of a metal w x kJ mol ⁻¹ respectively b. MX_2 as the following isotop ¹⁹⁹ X : 8. erage atomic mass of b. 202 amu owing molecules has th b. CH ₄ f purification is represe ${}_2 \xrightarrow{250^{\circ}C} TiI_4 \xrightarrow{1400^{\circ}C} Ti(pur)$	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu he maximum dipole mon c. NH ₃ ented by the following sc re) + I ₂ c. electrolytic refinit	d. M ₂ X : 2.0% element X is closest to d. 200 amu hent? d. NF ₃ heme?
21. Find the formula x, 2x, 5x, 100 x a. MX 22. An element, X ha 200 X:90% The weighted av a. 201 amu 23. Which of the follo a. CO ₂ 24. Which process of Ti(impure) + 2I a. Cupellation b. poling	of halide of a metal w x kJ mol ⁻¹ respectively b. MX_2 as the following isotop $^{199}X : 8.^{1}$ erage atomic mass of b. 202 amu owing molecules has th b. CH4 f purification is represe $_2 \xrightarrow{250^{\circ}C} TiI_4 \xrightarrow{1400^{\circ}C} Ti(pur)$	c. MX ₃ ic composition: 0% ²⁰² X the naturally occurring e c. 199 amu he maximum dipole mon c. NH ₃ ented by the following sc re) + I ₂ c. electrolytic refinin d. Van-Arkel proces	d. M ₂ X : 2.0% element X is closest to d. 200 amu nent? d. NF ₃ heme?
21. Find the formula x, 2x, 5x, 100 x a. MX 22. An element, X ha 200 X:90% The weighted av a. 201 amu 23. Which of the follo a. CO ₂ 24. Which process of Ti(impure) + 2I a. Cupellation b. poling 25. Malachite ore ha	of halide of a metal w x kJ mol ⁻¹ respectively b. MX_2 as the following isotop $^{199}X : 8.$ erage atomic mass of b. 202 amu owing molecules has th b. CH4 f purification is represe $_2 \xrightarrow{250^{\circ}C} TiI_4 \xrightarrow{1400^{\circ}C} Ti(pur)$	c. MX_3 ic composition: 0% ^{202}X the naturally occurring e c. 199 amu he maximum dipole mon c. NH_3 ented by the following sc re) + I ₂ c. electrolytic refinin d. Van-Arkel proces	d. M ₂ X : 2.0% element X is closest to d. 200 amu nent? d. NF ₃ heme?

26. Which of the following contains the least number of molecules?

a. 4.4 g CO_2 b. 3.4 g NH_3	c. 1.6 g of CH_4 d. 3.2 g SO_2
27. Which mixture of gases at room temperat	ure does not obey Dalton's law of partial
pressure?	
a. NO_2 and O_2 b. NH_3 and HCl	c. CO and CO ₂ d. SO ₂ and SO ₃
28. Which one of the following removes tempor	rary hardness of water?
a. Slaked lime b. Plaster of paris	c. CaCO ₃ d. Hydrolith
29. The carbon – carbon bond length in benzer	ne is
a. Same as in C_2H_4	c. In between C_2H_4 and C_2H_2
b. In between C_2H_6 and C_2H_2	d. In between C_2H_6 and C_2H_4
30. The correct order of ionic character of oxide	es of alkali earth metal
a. MgO> CaO > SrO>BaO	c. CaO>SrO.>BaO>MgO
b. BaO> SrO>CaO>MgO	d. SrO>BaO>MgO>CaO
31.Graphite is a good conductor of electricity of	due to
a. Its giant tetrahedral polymer structure	
b. Its high refractive index	
c. Presence of free and Mobile electrons	
d. High I.P. value of carbon	
32.'Be' is diagonally related with	
a. Mg b. Al	c. Si d. P
33. Which is mineral of Lead	
a. Galena b. Cinnabar	c. Cryolite d. Dolomite
34. Which concept best explains the fact the	hat o-nitrophenol is more volatile than
p-nitrophenol ?	
a. Resonance	c. Hydrogen bonding
b. Hyperconjugation	d. Steric hindrance
35. The compound A on heating gives a colou	rless gas and residue that is dissolved in
water to obtain B. excss of CO_2 is bubbled	d through aqs solution of B , C is formed
which is recovered in the solid form. Soli	d C on gentle heating gives back A. the
compound is	
a. Na ₂ CO ₃ b. K ₂ CO ₃	
	c. CaSO ₄ .2H ₂ O d. CaCO ₃
36. Aluminium is used for making alloys becaus	c. CaSO4.2H2O d. CaCO3 se of its
36.Aluminium is used for making alloys becausea. Resistance to corrosion	c. CaSO ₄ .2H ₂ O d. CaCO ₃ se of its c. Heaviness

37. Which of the following metal is present in the anode mud during the electrolytic refining of copper?

a. Sodium b. Aluminium c. Gold d. Iron 38. The mole fraction of alcohol in water is 0.100 Calculate its molality. b. 6.17 m a. 5.23 m c. 4.32 m d. 3.90 m 39. The dipole moment of H_2O_2 is 2.1 D. This indicates that the structure of H_2O_2 is : a. Linear b. Non – linear c. Symmetrical d. None 40. In acetylene molecule, the two carbon atoms are linked by a. One sigma bond and two pi bonds c. Three sigma bonds b. Two sigma bonds and one pi bond d. Three pi bonds 41. Which of the following rational numbers have terminating decimal? i. $\frac{16}{225}$ iii. $\frac{2}{21}$ iv. $\frac{7}{250}$ ii. $\frac{5}{18}$ a. i and ii b. ii and iii d. i and iv c. i and iii 42. If the equation $x^2 + 4x + k = 0$ has real and distinct roots, then b. k > 4c. $k \ge 4$ a. k < 4d. k < 443. If *a* and *b* can take values 1,2,3,4 the number of equations of the form $ax^{2} + bx + 1 = 0$ having real roots is, a. 10 b. 7 c. 6 d. 12 44. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is a. $\sqrt{7} cm$ b. $2\sqrt{7}$ cm c. 10 cm d. 5 cm 45. At one end of diameter PQ of a circle of radius 5 cm tangent XPY is drawn to the circle. The length of chord AB parallel to XY and at a distance of 8 cm from P is a. 5 cm b. 6 cm d. 8 cm c. 7 cm 46. If $f(x) = ax^2 + bx + c$ has no real zeros and a + b + c < 0, then a. c = 0b. c > 0d. None of these **c.** *c* < 0 47. The sum of 'n' terms of two A.P's are in the ratio 5n + 9: 9n + 6. Then, the ratio of their 18th term is C. $\frac{175}{321}$ d. $\frac{176}{321}$ a. $\frac{179}{321}$ b. $\frac{178}{321}$ 48. If $A + B = 90^{\circ}$, then $\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}$ is equals to C. $-\tan^2 A$ d. $-\cot^2 A$ a. $\cot^2 A$ b. cot ^{2}B 49. The radius of a circle is 20 cm. It is divided into four parts of equal area by drawing three concentric circles inside it. Then, the radius of the largest of three concentric circles drawn is c. 10 cm a. $10\sqrt{5}$ cm b. $10\sqrt{3}$ cm d. $10\sqrt{2}$ cm 50. If the sum of the areas of two circles with radii r_1 and r_2 is equal to the area of a circle of radius 'r', then $r_1 + r_2$

	a.	$> r^2$	b. $= r^2$	C. $< r^2$	d. None of these
51	. A (card is drawn at rai	ndom from a pack of 5	52 cards. The probabili	ity that the drawn
	cai	rd is not an ace is			
	a.	$\frac{1}{13}$	b. $\frac{9}{13}$	C. $\frac{4}{13}$	d. $\frac{12}{13}$
52	.Th	e probability that a	non – leap year has 53	3 Sundays is	
	a.	$\frac{2}{7}$	b. $\frac{5}{7}$	C. $\frac{6}{7}$	d. $\frac{1}{7}$
53	.AB	C is a right angled	triangle at A. A circle	is inscribed in it, the	length of the two
	sid	les containing the ri	ght angle are 6 cm and	d 8 cm then the radius	of circle is
	a.	6 cm	b. 8 cm	c. 14 cm	d. 2 cm
54	.Th	e area of the triang	le formed by the line $\frac{x}{a}$	$+\frac{y}{b} = 1$ with the coordi	nate axes is
	a.	ab	b. 2 <i>ab</i>	C. $\frac{1}{2}ab$	d. $\frac{1}{4}ab$
55	. A ı	rectangular sheet o	f paper 40 cm x 22 c	m is rolled to form a	hollow cylinder of
	he	ight 40 cm. The rad	lius of the cylinder is		
	a.	3.5 cm	b. 7 cm	c. $\frac{80}{7}$ cm	d. 5 cm
56	.Th	e exponent of 2 in t	he prime factorization	of 144	
	a.	4	b. 5	c. 6	d. 3
57	.Th	e distance of the po	int (4,7) from x – axis	is	
	a.	4	b. 7	c. 11	d. $\sqrt{65}$
58	.Th	e arithmetic mean o	of 1,2,3,, <i>n</i> is		
	a.	$\frac{n+1}{2}$	b. $\frac{n-1}{2}$	C. $\frac{n}{2}$	d. $\frac{n}{2} + 1$
59	. If t	the mean of first n i	natural numbers is $\frac{5n}{9}$,	then $n =$	
	a.	5	b. 4	c. 9	d. 10
60	.If t	the sum of p' terms	s of an AP is ' q' and th	ie sum of ' q' terms is P	, then the sum of
	<i>p</i> +	<i>q</i> terms will be			
	a.	0	b. <i>p</i> – <i>q</i>	C. $p + q$	d. $-(p + q)$
61	. If z	$x = r\sin\theta\cos\phi, \ y = r$	$\sin\theta\sin\phi$ and $z=r\cos\theta$	heta then	
	a.	$x^2 + y^2 + z^2 = r^2$		C. $x^2 - y^2 + z^2 = r^2$	
	b.	$x^2 + y^2 - z^2 = r^2$		d. $z^2 + y^2 - x^2 = r^2$	
62	. If	the difference betw	veen the circumferenc	e and radius of a circ	le is 37 cm, then
	usi	ing $\pi = \frac{22}{7}$, the circu	mference (in cm) of th	e circle is	
	a.	154	b. 44	c. 14	d. 7

63.Two different coins are tossed simultaneously. The probability of getting at least one head is

a.	$\frac{1}{4}$	b. $\frac{1}{8}$			с.	$\frac{3}{4}$		d.	7 8	
64.Th	e angle of elevation	n of t	he top of a	tov	ver at	а ро	oint on th	ne groun	d is 30	⁰ . What
wi	ll be the angle of el	evatio	n, if the he	ight	of the	e tow	er is trip	led?		
a.	30 ⁰	b. 9	0 ⁰		с.	60 ⁰		d.	45 ⁰	
65.Th	e largest numbei	rs tha	t divides	70	and	125	leaving	remaind	lers 5	and 8
re	spectively is									
a.	13	b. 9			с.	3		d.	585	
66.If	three points (0,0), (3,√3),	(3 , λ) form	an e	quilat	eral t	riangle,	then $\lambda =$		
a.	2	b. –	3		с.	- 4		d.	None o	of these
67.PC) is a tangent dra	wn fro	m a point	Ρt	o a ci	ircle	with cen	itre O ai	nd QOI	R is the
dia	ameter of the circle	such	that ∟ <i>POR</i> =	= 12	0°, th	en ∟(<i>DPQ</i> is			
a.	60 ⁰	b. 45	20		с.	30 ⁰		d.	90 ⁰	
68.If	mode of a series ex	ceeds	its mean b	oy 12	2, the	n mo	de excee	ds the m	nedian	by
a.	4	b. 8			с.	6		d.	10	
69.If	5+9+13++n terms 7+9+11+to (n+1)terms	$\frac{17}{16} = \frac{17}{16}$	then n is							
a.	8	b. 7			с.	10		d.	11	
70.In	a $\triangle ABC, \sqcup A = 90^{\circ}$,	AB =	5 cm and A	AC =	12 cr	n. If	$AD \perp BC$,	, then AL) =	
a.	$\frac{13}{2}$ cm	b. $\frac{60}{13}$	ст		с.	$\frac{13}{60}$ cn	ı	d.	$\frac{2\sqrt{15}}{13}$ C1	n
71.Se	elf – consciousness	(the a	wareness	of hi	mself) is th	ne proper	ty of		
a.	All living organism	ı				c. E	ukaryote	es only		
b.	Prokaryotes only					d. ⊦	luman be	eings onl	у	
72.W	hich of the following	g is lea	ast effective	e in j	photo	synth	iesis?			
a.	Sunlight	b	. Red light		c.	Blue	e light	d.	Greer	n light
73.Au	ixanometer is requi	red fo	r							
a.	Studying rate of t	ranspi	ration		с.	Finc	ling out r	ate of pl	notosyr	nthesis
b.	Measuring rate of	respir	ation		d.	Calo	culating r	ate of gr	owth	
74.En	zymes are basically	/ made	e of							
a.	Nucleic acids	b.	Proteins		с.	Fats	5	d.	Vitam	ins
75.A	women may develo	p beai	rd and mou	istac	hes d	ue to				
a.	Hypersecretion of	adren	al cortex		с.	Нур	ersecreti	on of ad	renalin	е
b.	Hypersecretion of	thyro	kine		d.	Нур	osecretio	on of thy	roxine	
76.Pa	rt of tongue that gi	ves fe	eling of sw	eetn	ess is					
a.	Tip	b. La	iteral edges	5	c.	Mide	dle part	d.	Poste	rior part
77.Ex	clusive holozoic nu	trition	is seen in							
a.	Housefly	b. Sp	bider		с.	Man	1	d.	Shark	(

78.Tł	ne life of the erythro	ocytes ir	n mammalian	bloo	d is a	about			
a.	120 days	b.	150 days		c.	190 days		d.	180 days
79.As	sertion: In protis	ts and	Monerans,	the	cell	devision	is itse	elf a	mode of
re	production.								
Re	eason: In protists a	nd Mon	erans, the or	ganis	ms c	or the pare	ent cell	divid	es into two
to	give rise to new inc	dividual	S.						
a.	If both assertion a	nd reas	son are true a	and th	ne re	ason is the	e correc	t exp	planation of
	the assertion.								
b.	If both assertion a	and reas	son are true l	but re	easor	n is not the	e correc	t exp	planation of
	the assertion.								
c.	If assertion is true	but rea	ason is false						
d.	If both assertion a	ind reas	son are false						
80.Oi	l reserve of ground	nut is p	resent in						
a.	Embryo	b. Co	tyledons	c. E	ndos	sperm	d. und	ergro	ound tubers
81.Tł	ne second tropic leve	el in the	e lake is						
a.	Zooplankton	b.	Phytoplankto	on		c. Benth	os		d. Fishes
82.W	hich one is primary	sex org	jan?						
a.	Scrotum	b.	Penis	c.	Tes	stis	d	. Pro	ostrate
83.`0	rigin of species' was	s writte	n by						
a.	Oparin	b. We	eismann	c.	Lar	marck	d	. Da	irwin
84.W	hich is not a pyrimi	dine?							
a.	Gluanine	b. Thy	rmine	с.	Ura	icil	d	. Cy	rtosine
85.M	uscular contractions	of alim	entary canal	are					
a.	circulation	b. Deg	glutition	с.	Chu	urning	d	. Pe	ristalsis
86.A	molecule of haemog	globin c	arries how m	any c	xyge	en molecul	es		
a.	1	b. 2		с.	3		d	. 4	
87.Ma	ale and female repro	oductive	e structures o	of the	angi	osperms a	ire		
a.	Carpel and pistil re	espectiv	ely						
b.	Pistil and stamen	respecti	vely						
с.	Gynoecium and ar	ndroeciu	im respective	ely					
d.	Androecium and g	ynoeciu	im respective	ely					
88.02	zone, prevents the e	entry of							
a.	Infrared rays	b.	Visible rays		c. l	JV rays		d.	X – rays

89. The mechanism of breakdown of food materials within the cell to release energy and

the trapping of this energy for synthesis of ATP is called

a. Fermentation
b. Glycolysis
c. Cellular respiration
d. Breathing
90. The food mixed thoroughly with acidic gastric juices of the stomach by the churning movement of its muscular wall and is called the

a. Bolus b. Chyle c. Chyme d. Chylomicron

OOOOO Best of Luck OOOOO

SHARADA VIDYANIKETHANA PUBLIC SCHOOL & PU COLLEGE

Devinagara, Talapady , Mangaluru – 23

PRATIBHA PRAVEENA EXAM 2018 - 19

7.	Light travelling in po	ositive	e x – direction, a	after	reflection, reflect	ed r	ay makes an
	angle 30 ⁰ with negati	ive y –	- axis. The angle o	of de	eviation is		
	a. 30 ⁰	b. 5	0 ⁰	c.	120 ⁰	d.	60 ⁰
8.	A transparent cube	of 0.2	21 m edge cont	ains	s a small air bub	ble.	Its apparent
	distance when viewed	d thro	ugh one face of tl	he c	ube is 0.1 m and v	wher	viewed from
	the opposite face is 0	0.04 m	n. The actual dista	ance	e of the bubble fror	n th	e second face
	of the cube is						
	e. 0.05 m	f. 0	0.04 m	g.	0.06 m	h.	0.17 m
9.	If a 30 V, 90 W bulb	is to b	be worked in 120	V lir	ne, the resistance t	o be	connected in
	series with the bulb is	s					
	e. 20 Ω	f. 1	Ω 0	g.	40 Ω	h.	30 Ω
10	Principle of calorimet.	ry is					
	e. Heat lost = heat g	gained		g.	Heat gained $= 0$		
	f. Heat lost = 0			h.	Heat capacity $= 0$		
11	. In the diagram, find t	the an	gle of prism. If i_1	= 4	5^{0} , $r_{1} = 30^{0}$		
			A.				
			i trat	-			
				-			
				1=			
				<u>-</u>			
	a. 45 ⁰	b. 7	250	с.	60 ⁰	d.	30 ⁰
12	a. 45 ⁰ .Two wires of the sam	b. 7 ne dim	25 ⁰ nensions but resis	c.	60^{0} ies $ ho_{1}$ and $ ho_{2}$ are co	d. nneo	30 ⁰ cted in series.
12	a. 45 ⁰ .Two wires of the sam The equivalent resisti	b. 7 ne dim ivity of	25 ⁰ nensions but resis f the combination	c.	60^{0} ies $ ho_{1}$ and $ ho_{2}$ are co	d. nneo	30 ⁰ cted in series.
12	a. 45^{0} .Two wires of the sam The equivalent resisti a. $\frac{\rho_{1}+\rho_{2}}{2}$	b.7 ne dim ivity of b.ρ	25° nensions but resis f the combination $\rho_1 + \rho_2$	c. etivit	60^{0} ies $ ho_{1}$ and $ ho_{2}$ are co $(ho_{1}+ ho_{2})2$	d. nneo d.	30^{0} cted in series. $\sqrt{ ho_{1}+ ho_{2}}$
12	a. 45^{0} .Two wires of the sam The equivalent resisti a. $\frac{\rho_{1}+\rho_{2}}{2}$.Focal length of conve	b. 7 ne dim ivity of b. ρ ex lens	25^{0} nensions but resis f the combination $\rho_{1} + \rho_{2}$ s is 15 cm. When	c. tivit c.	60^{0} ies $ ho_{1}$ and $ ho_{2}$ are co $(ho_{1}+ ho_{2})2$ actly half of the ler	d. nneo d.	30^{0} cted in series. $\sqrt{ ho_{1}+ ho_{2}}$ covered with
12 13	a. 45^{0} Two wires of the sam The equivalent resisti a. $\frac{\rho_{1}+\rho_{2}}{2}$ Focal length of conve non transparent mate	b. 7 ne dim ivity of b. ρ ex lens erial, t	25^{0} nensions but resis f the combination $\rho_{1} + \rho_{2}$ s is 15 cm. When then new focal len	c. tivit c. c. exa	60^{0} ies $ ho_{1}$ and $ ho_{2}$ are co $(ho_{1}+ ho_{2})2$ actly half of the ler will be	d. nneo d. ns is	30^{0} cted in series. $\sqrt{\rho_{1}+\rho_{2}}$ covered with
12 13	a. 45^{0} Two wires of the sam The equivalent resisti a. $\frac{\rho_{1}+\rho_{2}}{2}$ Focal length of conve non transparent mate e. 30 cm	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1	r^{5^0} nensions but resis f the combination $r_1 + \rho_2$ s is 15 cm. When then new focal len .0 cm	c. etivit c. exa gth g.	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})2$ actly half of the ler will be 45 cm	d. nneo d. ns is h.	30^{0} cted in series. $\sqrt{\rho_{1}+\rho_{2}}$ covered with 15 cm
12 13 14	a. 45^{0} Two wires of the sam The equivalent resisti a. $\frac{\rho_1 + \rho_2}{2}$ Focal length of conve non transparent mate e. 30 cm Find direction of mag	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 netic f	25^{0} nensions but resis f the combination $\rho_{1} + \rho_{2}$ s is 15 cm. When then new focal len .0 cm field at X when cu	c. etivit c. exa gth g. rren	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})2$ actly half of the ler will be 45 cm at direction at Y is c	d. nneo d. ns is h.	30^{0} cted in series. $\sqrt{\rho_{1}+\rho_{2}}$ covered with 15 cm ard.
12 13 14	a. 45^{0} Two wires of the sam The equivalent resisting a. $\frac{\rho_{1}+\rho_{2}}{2}$ Focal length of conversion non transparent mate e. 30 cm Find direction of mag	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 netic f x	r^{5^0} nensions but resis f the combination $\rho_1 + \rho_2$ s is 15 cm. When then new focal len 0 cm field at X when cu	c. stivit c. gth g. rren	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})^{2}$ actly half of the ler will be 45 cm at direction at Y is c	d. nneo d. ns is h. outw	30^{0} cted in series. $\sqrt{\rho_{1}+\rho_{2}}$ covered with 15 cm ard.
12 13 14	a. 45^{0} Two wires of the sam The equivalent resisting a. $\frac{\rho_{1}+\rho_{2}}{2}$ Focal length of conversion non transparent mate e. 30 cm Find direction of mag	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 inetic f	$p_{5^{0}}$ nensions but resis f the combination $p_{1} + \rho_{2}$ s is 15 cm. When then new focal len then new focal len 0 cm field at X when cu	c. tivit c. gth g. rren	60^{0} ies ρ_1 and ρ_2 are co $(\rho_1 + \rho_2)^2$ actly half of the ler will be 45 cm at direction at Y is c	d. nneo d. ns is h. outwo	30^{0} cted in series. $\sqrt{\rho_{1} + \rho_{2}}$ covered with 15 cm ard.
12 13 14	a. 45^{0} Two wires of the sam The equivalent resisting a. $\frac{\rho_1 + \rho_2}{2}$ Focal length of conver- non transparent mate e. 30 cm Find direction of mag • y • y • a e. Inward	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 netic f x f. 0	25° nensions but resis f the combination $r_1 + \rho_2$ s is 15 cm. When then new focal len then new focal len 0 cm field at X when cu	c. tivit c. gth g. rren g.	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})^{2}$ actly half of the ler will be 45 cm at direction at Y is c	d. nneo d. ns is h. outwo h.	30^{0} cted in series. $\sqrt{\rho_{1} + \rho_{2}}$ covered with 15 cm ard. Down
12 13 14 15	a. 45° Two wires of the sam The equivalent resisting a. $\frac{\rho_1 + \rho_2}{2}$ Focal length of conver- non transparent mate e. 30 cm Find direction of mag • y • y • a e. Inward A body of mass 1 k	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 netic f x f. 0 x g is t	25° nensions but resis f the combination $r_1 + \rho_2$ s is 15 cm. When then new focal len then new focal len 0 cm field at X when cu	c. tivit c. gth g. rren g. with	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})^{2}$ actly half of the ler will be 45 cm at direction at Y is c Up a velocity 20 m/s	d. nneo d. ns is h. outwo h. s. It	30^{0} cted in series. $\sqrt{\rho_{1} + \rho_{2}}$ covered with 15 cm ard. Down momentarily
12 13 14 15	a. 45° Two wires of the sam The equivalent resisting a. $\frac{\rho_1 + \rho_2}{2}$ Focal length of conver- non transparent mate e. 30 cm Find direction of mag • y • a e. Inward A body of mass 1 k comes to rest after a	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 netic f x f. 0 x f. 0	25° nensions but resis f the combination $r_1 + \rho_2$ s is 15 cm. When then new focal len then new focal len 0 cm field at X when cu Dutward thrown upwards with the second height of 18	c. tivit c. gth g. rren g. with m.	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})^{2}$ actly half of the ler will be 45 cm at direction at Y is c Up a velocity 20 m/s How much energy	d. nneo d. ns is h. outwo h. s. It	30^{0} cted in series. $\sqrt{\rho_{1} + \rho_{2}}$ covered with 15 cm ard. Down momentarily ost due to air
12 13 14 15	a. 45° Two wires of the sam The equivalent resisting a. $\frac{\rho_1 + \rho_2}{2}$ Focal length of conver- non transparent mate e. 30 cm Find direction of mag • y • e. Inward A body of mass 1 k comes to rest after a friction. (Take g = 10)	b. 7 ne dim ivity of b. ρ ex lens erial, t f. 1 netic f x f. 0 x f. 0 attainir 0 m/s ²	25° nensions but resis f the combination $\rho_1 + \rho_2$ s is 15 cm. When then new focal len then new focal len 0 cm field at X when cu Dutward hrown upwards with ng a height of 18	c. tivit c. gth g. vith m.	60^{0} ies ρ_{1} and ρ_{2} are co $(\rho_{1} + \rho_{2})^{2}$ actly half of the ler will be 45 cm at direction at Y is c Up a velocity 20 m/s How much energy	d. nneo d. ns is h. outwo h. s. It	30^{0} cted in series. $\sqrt{\rho_{1} + \rho_{2}}$ covered with 15 cm ard. Down momentarily ost due to air

16. Specific heat capacity of water is

- e. 4186 J Kg⁻¹ K⁻¹ g. 1200 J Kg⁻² K⁻¹
- f. 2186 J Kg⁻¹ K⁻¹ h. 200 J Kg⁻¹ K⁻¹

17. Find the effective resistance between A and B

		A	2 52 4.2 24 12 000 51 000 51 000 51 000 51 000 51 000 51 000 52 52 000 52 000 52 000 52 000 52 000 52 000 52 000 52 000 52 000 52 000 52 52 52 52 52 000 52 52 52 52 52 52 52 52 52 52	B	
a. 1.42	2Ω Ł	ο. 1260 Ω	c.	25 Ω	d. 50 Ω
18.If n equ	ual resistors are	first connect	ed in series	and then connect	ed in parallel. The
ratio of	the maximum t	o minimum re	esistance ob	otained in two cases	s is
a. n:1	t	D. $n^2 : 1$	с.	$1: n^2$	d. 1:n
19.Inside d	diamagnetic mat	erial number	of magnetic	c field lines	
e. Grea	ater than outside	е	g.	Less than outside	
f. Equ	al to outside		h.	No magnetic field	lines
20.Find th	e wavelength o	f waves havi	ng frequen	cy 480 Hz with ve	locity of sound is
340 m/	s?				
a. 0.71	Lm t	o. 0.61 m	с.	0.51 m	d. 0.41 m
21.The mo	lecule which has	s zero dipole i	moment is		
a. CH ₂	Cl ₂ Ł	b. BF₃	с.	NF ₃	d. ClO ₂
22.With w	hich of the fo	ollowing elect	tronic confi	guration an atom	has the lowest
ionizati	on enthalpy?				
a. 1s²2	2s ² 2p ³ t	b. $1s^22s^22p^63$	Ss ¹ C.	$1s^{2}2s^{2}2p^{6}$	d. 1s ² 2s ² 2p ⁵
23.A cova	lent molecule A	B ₃ has pyra	midal struc	ture . The number	[.] of lone pair and
bond pa	air electrons in t	he molecule a	are respectiv	vely	
e. 0 ar	nd 4 f	. 3 and 1	g.	1 and 3	h. 2 and 2
24. Dipole	 induced dipole 	interactions	are present	in which of the foll	owing pairs?
e. HCl	and He atoms		g.	SiF ₄ and He atoms	, ,
f. H ₂ O	and alcohol		h.	Cl ₂ and CCl ₄	
25. Which o	one is correct sta	atement for z	eolite?		
a. The	y are alumino si	licates			
b. Hyd	rated zeolites ar	e used as ion	exchanger	s in hardening of so	oft water
c. ZSM	1 – 5 is used to a	convert gasoli	ine to alcoh	ol	
d. All c	of these				

26.2	$H_2O_2 \rightarrow 2H_2O + O_2$.	Which is the correct st	atement about this rea	action ?		
a.	H ₂ O ₂ decompositio	n involves both oxidat	ion and reduction			
b.	H ₂ O ₂ decomposition is Oxidation only					
с.	H ₂ O ₂ decompositio	n is reduction only				
d.	d. H ₂ O ₂ decomposition neither oxidation nor reduction					
27. A	. At its melting point ice is lighter than water because					
a.	H ₂ O molecules are	more closely packed i	in solid state			
b.	Ice crystals have h	ollow hexagonal arrar	ngement of H ₂ O molecu	ıles		
c.	On melting of ice t	he H2O molecule shrin	ıks in size			
d.	Ice forms mostly h	eavy water on first m	elting			
28.W	hich of the following	sulphides when heate	ed strongly in air gives	the corresponding		
m	etal?					
e.	Cu ₂ S	f. CuS	g. Fe ₂ S ₃	h. FeS		
29.Pe	ermanent hardness o	lue to Mg^{2+} ions is be	st removed by			
a.	Ca(OH) ₂	b. Na ₂ CO ₃ c.	$Na_2CO_3+Ca(OH)_2$	d. None of these		
30.Na	OH is manufactured	d by electrolysis of bri	ne solution. The produ	cts of the reaction		
ar	e					
a.	Cl_2 and H_2 b.	Cl_2 and Na-Hg	c. Cl_2 and Na	d. Cl_2 and O_2		
31.Mo	odern atomic weight	scale is based on				
a.	H – 1	b. C – 12	c. C – 14	d. C – 16		
32.Th	e following reaction	s take place in the bla	st furnace in the prepa	ration of impure		
irc	on. Identify the reac	tion pertaining to the	formation of the slag			
a.	$2C(s) + O_2(g) \rightarrow 2$	CO(g) c. Fe ₂	O_3 (s) + 3CO (g) \rightarrow 2 F	[−] e (s) + 3 CO ₂ (s)		
b.	$CaO(s) + SiO_2(s)$	\rightarrow CaSiO ₃ (s) d. C	$aCO_3 (s) \rightarrow CaO (s) + 0$	CO ₂ (g)		
33.Ho	ousehold gaseous fu	el (LPG) mainly contai	ns			
e.	CH ₄	f. C ₂ H ₂	g. C ₂ H ₄	h. C ₄ H ₁₀		
34.W	hat is the hybridizat	ion of carbon in diamo	ond?			
a.	SP	b. SP ²	c. SP ³	d. SP ³ d		
35.W	hich of the following	metal is found in nati	ve state			
e.	Al	f. Cu	g. Fe	h. Mg		
36.If	a saturated solution	is heated, it				
a.	Changes to unsatu	ration				
b.	Changes to super s	saturation				
с.	Remains same					
d.	Till 50°C, changes	to unsaturation and the	nen super saturation			

37.	Lewis acid character of	of boron trihalides is as	follows	
	e. $BI_3 > BBr_3 > BCI_3$	> BF3	g. $BCl_3 > BF_3 > BBr_3$	> Bl ₃
	f. $BF_3 > BCl_3 > BBr_3$	> Bl ₃	h. $BI_3 > BBr_3 < BF_3 <$	< BCl ₃
38.	4 g H ₂ , 32 g O ₂ ,14 g	$N_2 \mbox{ and } 11 \mbox{ g } CO_2 \mbox{ are }$	taken in a bulb of 500) ml.Which one of
	these has maximum a	active mass?		
	a. H ₂	b. O ₂	c. N ₂	d. CO ₂
39.	Reaction between foll	owing pairs will produc	e by hydrogen except	
	e. Cu + HCl	f. Fe + H_2SO_4	g. Mg + Steam	h. Na + alcohol
40.	When the temperatur	e is raised through 10	C the volume is increa	ased by $\frac{1}{273}^{th}$ times
	of the original volume	e. This is		
	a. Boyle's Law	b. Charles' Law c	. Avogadro Law d.	Graham's Law
41.	Two persons are 'a' m	netres apart and the he	ight of one is double th	nat of the other. If
	from the middle poin	it of the line joining th	neir feet, an observer	finds the angular
	elevation of their tops	to be complementary,	, then the height of the	e shorter post is
	a. $\frac{a}{4}$	b. $\frac{a}{\sqrt{2}}$	c. $a\sqrt{2}$	d. $\frac{a}{2\sqrt{2}}$
42.	The next term of the	AP $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$		
	a. √70	b. $\sqrt{84}$	C. √97	d. √112
43.	If the equation $x^2 - b$	x + 1 = 0 has no real ro	oots, then	
	a. – 3 < b < 3	b 2 < b < 2	c. b > 2	d. b < - 2
44.	The probability that a	non – leap year has 53	3 Sundays is	
	a. $\frac{2}{7}$	b. $\frac{5}{7}$	C. $\frac{6}{7}$	d. $\frac{1}{7}$
45.	PQ is a tangent draw	wn from a point P to	a circle with centre C) and QOR is the
	diameter of the circle	such that $\square POR = 120^{\circ}$, then $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	e. 60 ⁰	f. 45 ⁰	g. 30 ⁰	h. 90 ⁰
46.	If $\frac{x \cos c^2 30^0 \sec^2 45^0}{8 \cos^2 45^0 \sin^2 60^0} = tat$	$n^2 60^0 - tan^2 30^0$, then x	is	
	e. 1	f1	g. 2	h. 0
47.	If $\sec \theta + \tan \theta = x$, then	n secθ		
	a. $\frac{x^2+1}{x}$	b. $\frac{x^2+1}{2x}$	C. $\frac{x^2 - 1}{2x}$	d. $\frac{x^2 - 1}{x}$
48.	If α, β, γ are the zeros	of the polynomial $f(x)$	$= ax^3 + bx^2 + cx + d$ the	$\operatorname{en} \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =$
	e. $-\frac{b}{a}$	f. $\frac{c}{d}$	g. $-\frac{c}{d}$	h. $-\frac{c}{a}$
49.	A bag contains three	green marbles, four blu	ue marbles and two or	ange marbles. If a
	marble is picked at ra	ndom, then the probab	pility that it is not an or	ange marble is
	e. $\frac{1}{4}$	f. $\frac{1}{3}$	g. $\frac{4}{9}$	h. 7/9

50. The sum of the exponents of the prime factors in the prime factorization of 196 is b. 2 c. 4 d. 6 a. 1 51. If the area of a circle is equal to the sum of the area of two circles of diameters 10 cm and 24 cm, then diameter of the larger circle (in cm) is d. 14 a. 34 b. 26 c. 17 52. The distance between the points $(\cos \theta, \sin \theta)$ and $(\sin \theta, -\cos \theta)$ is b. $\sqrt{2}$ a. $\sqrt{3}$ c. 2 d. 3 53.Let S_n denote the sum of 'n' terms of an AP whose first term is 'a'. If the common difference 'd' is given by $d = S_n - kS_{n-1} + S_{n-2}$, then k is c. 3 a. 1 b. 2 d. None of these 54. If the LCM of a and 18 is 36 and HCF of a and 18 is 2, then a = _____ e. 2 f. 3 g. 4 h. 1 55. The mean of first *n* odd natural numbers is a. $\frac{n+1}{2}$ b. $\frac{n}{2}$ **c.** *n* d. n^2 56. If the equation $x^2 + 4x + k = 0$ has real and distinct roots, then a. *k* < 4 b. k > 4C. $k \ge 4$ d. $k \leq 4$ 57. If $\frac{5+9+13+\dots+n \ terms}{7+9+11+\dots+to \ (n+1) \ terms} = \frac{17}{16}$, then *n* is b. 7 a. 8 c. 10 d. 11 58. If the radius of a circle is diminished by 10%, then its area is diminished by a. 10 % b. 19 % c. 20 % d. 36 % $59.\frac{\cot\theta}{\cot\theta-\cot3\theta}+\frac{\tan\theta}{\tan\theta-\tan3\theta} \text{ is equal to}$ e. 0 f. 1 g. - 1 h. 2 60.A right triangle with sides 3 cm , 4 cm and 5 cm is rotated about the side of 3 cm to form a cone. The volume of the cone so formed is b. $12 \pi cm^3$ a. $15 \pi cm^3$ C. $16 \pi cm^3$ d. $20 \pi cm^3$ 61.A fraction becomes $\frac{4}{5}$, if 1 is added to both numerator and denominator. If, however 5 is subtracted from both numerator and denominator, the fraction becomes $\frac{1}{2}$. Then the fraction is C. $\frac{7}{2}$ b. $\frac{3}{7}$ d. $\frac{5}{2}$ a. $\frac{9}{2}$ 62. The value of $\tan 10^{\circ} \tan 15^{\circ} \tan 75^{\circ} \tan 80^{\circ}$ is a. -1 b. 0 c. 1 d. None of these 63. The ratio of the outer and inner perimeters of a circular path is 23 : 22. If the path is 5 meters wide, the diameter of the inner circle is a. 55 m b. 110 m c. 220 m d. 230 m

64. The coordinates of the	ne poin	nt P dividing the l	line	segment joining th	e po	pints A(1,3) and
B(4,6) in the ratio 2 :	1 are					
a. (2,4)	b. (3,5)	c.	(4,2)	d.	(5,3)
65. The polynomial px^2 +	-qx+n	$rx^4 + 5$ is of type				
e. Linear	f. Q	uadratic	g.	Cubic	h.	Biquadratic
66. If PT is tangent draw	n from	n a point P to a c	circl	e touching it at T a	nd	O is the centre
of the circle, then $\llcorner C$	$PT + \bot$	POT =				
a. 30 ⁰	b. 6	50 ⁰	с.	90 ⁰	d.	180 ⁰
67.ABC is a right angle	d trian	gle at A. A circle	e is	inscribed in it, the	len	gth of the two
sides containing the	right a	ngle are 6 cm an	nd 8	cm then the radius	s of	circle is
e. 6 cm	f. 8	cm	g.	14 cm	h.	2 cm
68. If $f(x) = ax^2 + bx + c$	has no	real zeros and a	a + b	+ c < 0, then		
a. $c = 0$	b. <i>c</i>	x > 0	с.	c < 0	d.	None of these
69.A rectangular sheet	of pap	oer 40 cm x 22 o	cm i	is rolled to form a	hol	low cylinder of
height 40 cm. The ra	idius of	f the cylinder is				
e. 3.5 cm	f. 7	cm	g.	$\frac{80}{7}$ cm	h.	5 cm
70. The hour hand of a o	clock is	6 cm long. The	are	a swept by it betw	een	11.20 am and
11.55 am is						
e. 2.75 cm ²	f. 5	.5 cm ²	g.	11 cm ²	h.	10 cm ²
71. Which one respires t	hrough	n gills?				
e. Crocodile	f. W	Vhale	g.	Frog	h.	Prawn
72.Shock movements of	fleaves	s of sensitive pla	nts	Mimosa pudica are		
a. Thermonasty	b. S	eismonasty	c.	Hydrotropism	d.	Chemonasty
73. Water lost through the	ranspir	ation is				
e. Pure water			g.	Rich in dissolved s	salts	5
f. Rich in organic so	lutes		h.	All of these		
74. Hydroponics is						
a. Nutrient less cult	ure		c.	Soilless culture		
b. Water less culture	e		d.	None of these		
75. Which one of the foll	owing i	is not the functio	on of	f placenta?		
a. Facilitates remov	al of ca	arbon dioxide and	d wa	iste material from e	emb	ryo
b. Secretes oxytocir	n during	g parturition				
c. Facilitates supply	of oxy	gen and nutrient	ts to	embryo		

d. Secretes estrogen

76. Double fertilization is fusion of

- e. Two eggs
- f. Two eggs and polar nuclei with pollen nuclei
- g. One male gamete with egg and other with synergid
- h. One male gamete with egg and other with secondary nucleus

77. Genetic material without nuclear membrane is found in

	a. Bacteria	and Mycoplas	ma	с.	Archaebacteria and	d Blue green algae	
	b. Cyanoba	cteria and Bao	cteria	d.	. All of these		
78.	Infertility ca	n occur in bot	h sexes due to d	eficie	ency of		
	a. Oxytocin		b. Proloctin	С	. LH	d. FSH	
79.	Gastric juice	e of infants co	ntains				
	a. Pepsinog	en,Lipase,Rer	nin		c. Maltose, Pepsir	nogen, rennin	
	b. Amylose	, Rennin,Peps	inogen		d. Nuclease, Pep	sinogen, Lipase	
80.	Blood calciu	m level is low	ered by deficienc	y of			
	a. Parathor	mone		c.	calcitonin		
	b. Thyroxin	e		d.	Both calcitonin an	d parathormone	
81.	Which one o	of the following	g fruits is parther	locar	pic?		
	a. Apple	b.	Jackfruit	c.	Banana	d. Brinjal	
82.	Fermentatio	n takes place	under anaerobic	conc	litions in		
	e. Many pro	okaryotes		g.	Germinating seeds		
	f. Unicellul	ar eukaryotes		h.	All of these		
83.	The backbor	ne of the DNA	is formed by				
	a. Sugar –	base – sugar	chain	c.	Sugar – phosphat	e – sugar chain	
	b. Base – p	hosphate – su	ıgar chain	d.	Base – phosphate	e – base chain	
84.	Gall bladder	takes part in					
	e. Secretion	n of bile		g.	Formation of bile	salts	
	f. Storage	of bile		h.	Formation of enzy	/mes	
85.	Cold blooded	d animal with	a single circulation	on is			
	a. Mammal	b.	Amphibian	c.	Reptile	d. Fish	
86.	The function	of ovary is					
	A. To produ	ice female gar	nete				
	B. To provid	de the site for	fertilization				
	C. To provid	de the site for	implantation				
	D. To produ	ice steroid ho	rmones				
	a. A&B	b.	A,B & D	c.	A,B & C	d. A & D	
						e.	

87. Process by which insecticide like DDT reach man is

- a. Bioaccumulation c. Bioremediation
- b. Biomagnification d. Eutrophication

88. Most abundant and least abundant WBC's are

- a. Lymphocytes and monocytes respectively
- b. Neutrophils and Basophils respectively
- c. Eosinophils and monocyte respectively
- d. Neutrophils and eosinophils respectively

89. Deficiency of Vitamin A causes

- a. Cataract c. Hypermetropia
- b. Myopia d. Night blindness
- 90. In diabetes mellitus the patient drinks more water as there is urinary loss of
 - e. Salt f. Insulin g. Protein h. Glucose

OOOOO Best of Luck OOOOO

SHARADA VIDYANIKETHANA PUBLIC SCHOOL & PU COLLEGE

Devinagara, Talapady , Mangaluru – 23

PRATIBHA PRAVEENA EXAM 2018 - 19

1. Inside battery electrons are moving from e. Higher to lower potential end f. Lower to higher potential end g. Electrons are not flowing inside battery h. None of these 2. When light travels from denser medium to rarer medium _____ will remain same f. Wavelength h. All of these e. Frequency g. Velocity 3. When luminous point source is present inside water. From water to air light will pass through e. Circular area g. Cubical area f. Rectangular area h. Throughout the surface of water 4. Body is dropped from a height where its potential energy is 20 J. If mass of the body is 0.2 kg, find the velocity when it reaches the earth surface a. $5\sqrt{2}$ m/s² h. $15\sqrt{2}$ m/s² e. 10 m/s² f. $10\sqrt{2}$ m/s² 5. Conductors can be changed by three method that is i. Friction ii. Conduction iii. Induction An insulator can be charged by e. Only friction g. Only Induction f. Only conduction h. Both conduction and friction 6. Array of light incident on the horizontal surface of a glass slab at 60⁰ just grazes the adjacent vertical surface after refraction. Find the critical angle d. $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$ a. $\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$ b. $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ C. $\sin^{-1}\frac{1}{2}$

7. Find the equivalent resistance between A and B in the following circuit

e. $\frac{R}{2}$

g. R + 2 R

c. Water to air

h. Zero

- 8. Bending of light will be more when light travels from
 - a. Glass to air
 - b. Glass to water d. Diamond to air
- 9. Principle of "method of mixture" is based
 - e. Conservation of energy
 - f. Conservation of momentum
 - g. Conservation of number of particle
 - h. Conservation of linear momentum
- 10.If we combine one convex lens and concave lens of same radii of curvature and having same refractive index. The focal length of the combination will be
 - i. Zero k. Reduces to half of focal length of convex lens
 - j. Infinity I. Sum of focal lengths of both lenses
- 11. Diagram shows the path of the charged particle in uniform magnetic field. The angle between the velocity of changed particle and direction of magnetic field may be

12.A convex lens V having power P is cut into two parts and combined as shown in the figure. The power of the combination A and B will be

i. Zero in both A & B

k. Zero in A and 2P in B

j. 2P in A and zero in B

I. 2P in both A & B

e. 90⁰

13.A battery has an en	nf 12 V. If the internal r	esistance of the batter	y is 0.4 Ω . What is
the maximum curre	nt that can be drawn fro	om the battery?	
e. 10 A	f. 20 A	g. 30 A	h. 40 A
14.A lift is moving dow	n with acceleration a. A	man in the lift drops a	ball inside the lift.
The acceleration of	the ball as observed by	v the man in the lift a	nd a man standing
stationary on the gr	ound are respectively		
i. <i>g</i> , <i>g</i>	j. <i>g</i> – <i>a</i> , <i>g</i> – <i>a</i>	k. g – a,g	I. a,g
15.Which of the follow	ving statement (S) fals	e for a particle movir	ng in a circle with
constant angular sp	eed		
e. The acceleration	vector points to the cer	ntre of the circle	
f. Velocity vector p	oints to the centre of th	e circle	
g. Velocity vector is	s tangent to the circle		
h. Acceleration vec	tor is tangent to the circ	cle	
16.A body projected v	ertically upwards with a	a velocity returns to th	e starting point in
4s. If g is 10 m/s²,	the value of u is		
i. 10 m/s ²	j. 5 m/s²	k. 4 m/s²	l. 20 m/s ²
17.1 calorie =	joules		
a. 4.2	b. 3.2	c. 5.2	d. 1.2
18.In primary rainbow	red rays make an angle	with sun rays	
e. 25 ⁰	f. 35 ⁰	g. 90 ⁰	h. 42 ⁰
19. The refractive index	k of glass is 1.5. For lig	ght whose wavelength	in vaccum is 600
nm. What is the wa	velength of this light wh	en it passes through g	lass.
a. 400 nm	b. 700 nm	c. 500 nm	d. 600 nm
20.A straight wire of m	ass 100g and length 1r	n carries a current of 2	2A. It is suspended
in mid – air by ur	niform horizontal magn	etic field as in the fi	gure. What is the
magnitude of the m	agnetic field.		
	•		
F			
	T (2) B		
e. 2.8 T	f. 3.8 T	g. 0.49 T	h. 3.2 T
21.Oxidation state show	wn by group 13 element	is is	
a. +1 and +3	b. +1,+2 and +3	c. +2,+3 and+4	d. +1 and +4
22. Which one of the fo	lowing compounds give	s methane on treatmer	nt with water?

a. $Z < 1$, gas is less compressible c. $Z = \infty$, for an ideal gas b. $Z > 1$, gas is more compressible d. $PV \neq nRT$, for real gas 24. The general formula of a cycloalkane is e. C_nH_n f. C_nH_{2n} g. C_nH_{2n-2} h. C_nH_{2n+2} 25. The compound that is not a lewis acid is e. BF_3 f. $AlCl_3$ g. PCl_3 h. $SnCl_4$ 26. Which of the following compound is used in the artificial ripening of fruits? a. Ethylene b. Acetylene c. Ethane d. Methane 27. Assertion : Ionic compounds tend to non – volatile
b. $Z > 1$, gas is more compressible d. $PV \neq nRT$, for real gas 24. The general formula of a cycloalkane is e. C_nH_n f. C_nH_{2n} g. C_nH_{2n-2} h. C_nH_{2n+2} 25. The compound that is not a lewis acid is e. BF_3 f. $AICI_3$ g. PCI_3 h. $SnCI_4$ 26. Which of the following compound is used in the artificial ripening of fruits? a. Ethylene b. Acetylene c. Ethane d. Methane 27. Assertion : Ionic compounds tend to non – volatile
24. The general formula of a cycloalkane is e. C_nH_n f. C_nH_{2n} g. C_nH_{2n-2} h. C_nH_{2n+2} 25. The compound that is not a lewis acid is
e. CnHn f. CnH2n g. CnH2n-2 h. CnH2n+2 25. The compound that is not a lewis acid is . . . e. BF3 f. AlCl3 g. PCl3 h. SnCl4 26. Which of the following compound is used in the artificial ripening of fruits? . . a. Ethylene b. Acetylene c. Ethane d. Methane 27. Assertion : Ionic compounds tend to non - volatile . .
25. The compound that is not a lewis acid is e. BF ₃ f. AlCl ₃ g. PCl ₃ h. SnCl ₄ 26. Which of the following compound is used in the artificial ripening of fruits? a. Ethylene b. Acetylene c. Ethane d. Methane 27. Assertion : Ionic compounds tend to non – volatile
e. BF ₃ f. AlCl ₃ g. PCl ₃ h. SnCl ₄ 26.Which of the following compound is used in the artificial ripening of fruits? a. Ethylene b. Acetylene c. Ethane d. Methane 27.Assertion : Ionic compounds tend to non – volatile
26. Which of the following compound is used in the artificial ripening of fruits? a. Ethylene b. Acetylene c. Ethane d. Methane 27. Assertion : Ionic compounds tend to non – volatile
a. Ethylene b. Acetylene c. Ethane d. Methane 27.Assertion : Ionic compounds tend to non – volatile
27.Assertion : Ionic compounds tend to non – volatile
Reason : The intermolecular forces in these compounds are weak
a Both assertion and reason are correct and reason is the correct explanation of
the assertion
b Both assertion and reason are correct, but reason is not correct explanation of
the assertion
c Assertion is correct but reason is incorrect
d Assertion is incorrect but reason is correct
28 The amount of oxalic acid (molecular weight = 126) required to prepare 100 ml of
0.2 M solution is :
e^{126a} f 252a a 0.63a b 5.04a
29 An alloy which doesnot contain conpertis
e Solder f Bronze a Brass h Bell metal
30 Calculate the initial volume if a sample of gas at 75 C is changed to 1.50 L at 25 C
at constant pressure
e = 1.751 f 1.951 a 1.851 b 1.651
31 The first ionization potentials (eV) of N and O respectively are
i. 8.29 . 8.29 k. 8.29 . 11.32
i 11 32 11 32 11 32 11 32 8 21
32 Which one of the following orders is not in accordance with the property stated
against it?
a. $F_2 > C_{12} > Br_2 > I_2$: bond dissociation energy
h $F_2 > C1_2 > Br_2 > I_2$; oxidizing power
c. HI > HBr > HCl > HF : acidic property in water
d. $F_2 > Cl_2 > Br_2 > I_2$: electronegativity

	ka – silicon are knov	n as	
a. Gallium and Germa	nium	c. Iron and Sulph	nur
b. Aluminium and Silio	con	d. Boron and Tec	hnitium
34. The angular momentur	n of electron in <i>d</i> orb	ital is equal to	
a. 2√3 h	b. 0 h	c. √6 h	d. √2 h
35. Which of the following	is not a mineral of ire	on?	
a. Magnetite	b. Siderite	c. Smithsonite	d. Limonite
36.5.6 L of oxygen at NTP	is equivalent to –		
a. 1 mole	b. ½ mole	c. ¼ mole	d. 1/8 mole
37.Bleaching action of H ₂ C	D2 is due to its :		
e. Oxidising nature		g. Acidic nature	
f. Reducing nature		h. Thermal instabi	ility
38. Composition of bauxite	is		
a. Al ₂ O ₃	b. Al ₂ O ₃ .H ₂ O	c. Al ₂ O ₃ .2H ₂ O	d. Al ₂ O ₃ .3H ₂ O
39. Pure water can be obta	ined from sea water	by	
i. Centrifugation		k. Sedimentation	
j. Plasmolysis		I. Reverse osmos	is
40. Which of the following	oxides is not expecte	ed to react with sodiu	um hydroxide
40. Which of the following e. BeO	oxides is not expecte f. B ₂ O ₃	d to react with sodiu g. Cao	um hydroxide h. SiO2
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e	oxides is not expected. F_2O_3 qual roots, then $c =$	d to react with sodiu g. Cao	um hydroxide h. SiO2
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$	b. $\frac{b}{2a}$	d to react with sodiut g. Cao c. $-\frac{b^2}{4a}$	um hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc	oxides is not expected f. B_2O_3 equal roots, then $c =$ b. $\frac{b}{2a}$ h each other externa	d to react with sodic g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a	um hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then ∟ <i>ACB</i>	oxides is not expected f. B_2O_3 qual roots, then $c =$ b. $\frac{b}{2a}$ h each other externa	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a	um hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\bot ACB$ i. 60^0	oxides is not expected f. B_2O_3 qual roots, then $c =$ b. $\frac{b}{2a}$ h each other externates i. 45 ⁰	d to react with sodic g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30 ⁰	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\bot ACB$ i. 60^0 43. If the mean of 6,7, <i>x</i> , 8, y	oxides is not expected f. B_2O_3 equal roots, then $c =$ b. $\frac{b}{2a}$ h each other externate i. 45 ⁰ b, 14 is 9, then	d to react with sodic g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30 ⁰	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\angle ACB$ i. 60^0 43. If the mean of 6,7, <i>x</i> , 8, y a. $x + y = 21$	oxides is not expected f. B ₂ O ₃ equal roots, then $c =$ b. $\frac{b}{2a}$ h each other externate j. 45 ⁰ r, 14 is 9, then	d to react with sodic g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30^0 c. $x - y = 19$	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\bot ACB$ i. 60^0 43. If the mean of $6,7, x, 8, y$ a. $x + y = 21$ b. $x + y = 19$	oxides is not expected f. B ₂ O ₃ equal roots, then $c =$ b. $\frac{b}{2a}$ h each other externation i. 45 ⁰ r, 14 is 9, then	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30^0 c. $x - y = 19$ d. $x - y = 21$	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to I. 90 ⁰
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\perp ACB$ i. 60^0 43. If the mean of 6,7, <i>x</i> , 8, <i>y</i> a. $x + y = 21$ b. $x + y = 19$ 44. If one root of the poly	oxides is not expected f. B_2O_3 equal roots, then $c =$ b. $\frac{b}{2a}$ h each other externates j. 45^0 r, 14 is 9, then	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30^0 c. $x - y = 19$ d. $x - y = 21$ 3x + k is reciprocal c	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰ of the other, then the
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\perp ACB$ i. 60^0 43. If the mean of 6,7, <i>x</i> , 8, <i>y</i> a. $x + y = 21$ b. $x + y = 19$ 44. If one root of the poly value of <i>k</i> is	oxides is not expected f. B_2O_3 qual roots, then $c =$ b. $\frac{b}{2a}$ h each other externates i. 45^0 r, 14 is 9, then nomial $f(x) = 5x^2 + 1$	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30^0 c. $x - y = 19$ d. $x - y = 21$ 3x + k is reciprocal c	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰ of the other, then the
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\bot ACB$ i. 60^0 43. If the mean of $6,7, x, 8, y$ a. $x + y = 21$ b. $x + y = 19$ 44. If one root of the poly value of k is i. 0	oxides is not expected f. B ₂ O ₃ equal roots, then $c =$ b. $\frac{b}{2a}$ h each other externates j. 45 ⁰ r, 14 is 9, then nomial $f(x) = 5x^2 + 1$ j. 5	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30^0 c. $x - y = 19$ d. $x - y = 21$ 3x + k is reciprocal c k. $\frac{1}{6}$	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰ of the other, then the l. 6
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\bot ACB$ i. 60^0 43. If the mean of $6,7, x, 8, y$ a. $x + y = 21$ b. $x + y = 19$ 44. If one root of the poly value of k is i. 0 45. If the sums of `n' terr	oxides is not expected f. B_2O_3 iqual roots, then $c =$ b. $\frac{b}{2a}$ h each other externates j. 45^0 r, 14 is 9, then nomial $f(x) = 5x^2 + 1$ j. 5 ns of two arithmetic	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30 ⁰ c. $x - y = 19$ d. $x - y = 21$ 3x + k is reciprocal c k. $\frac{1}{6}$ progressions are in	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to l. 90 ⁰ of the other, then the l. 6 a the ratio $\frac{3n+5}{5n+7}$, then
40. Which of the following e. BeO 41. If $ax^2 + bx + c = 0$ has e a. $-\frac{b}{2a}$ 42. Two equal circles touc the circles. Then $\bot ACB$ i. 60^0 43. If the mean of $6,7, x, 8, y$ a. $x + y = 21$ b. $x + y = 19$ 44. If one root of the poly value of k is i. 0 45. If the sums of 'n' terr their n th terms are in th	oxides is not expected f. B ₂ O ₃ iqual roots, then $c =$ b. $\frac{b}{2a}$ h each other externates i. 45 ⁰ y, 14 is 9, then nomial $f(x) = 5x^2 + 1$ j. 5 ins of two arithmetic he ratio	d to react with sodiu g. Cao c. $-\frac{b^2}{4a}$ ally at C and AB is a k. 30^0 c. $x - y = 19$ d. $x - y = 21$ 3x + k is reciprocal c k. $\frac{1}{6}$ progressions are in	Im hydroxide h. SiO ₂ d. $\frac{b^2}{4a}$ a common tangent to I. 90 ⁰ of the other, then the I. 6 h the ratio $\frac{3n+5}{5n+7}$, then

46. If $3\cos\theta = 5\sin\theta$, then the value of $\frac{5\sin\theta - 2sec^3\theta + 2\cos\theta}{5\sin\theta + 2sec^3\theta - 2\cos\theta}$ is a. $\frac{271}{979}$ b. $\frac{316}{2937}$ C. $\frac{542}{2937}$ d. None of these 47.A bag contains three green marbles, four blue marbles and two orange marbles. If a marble is picked at random, then the probability that it is not an orange marble is i. $\frac{1}{4}$ j. $\frac{1}{2}$ k. $\frac{4}{2}$ 48. If ABC is an isosceles triangle and D is a point on BC such that $AD \perp BC$, then a. $AB^2 - AD^2 = BD.DC$ c. $AB^2 + AD^2 = BD.DC$ b. $AB^2 - AD^2 = BD^2 - DC^2$ d. $AB^2 + AD^2 = BD^2 - DC^2$ 49. If x = 1 is a common root of the equations $ax^2 + ax + 3 = 0$ and $x^2 + x + b = 0$, then ab = e. 3 f. 3.5 h. – 3 q. 6 50. The smallest number by which $\sqrt{27}$ should be multiplied so as to get a rational number c. $\sqrt{3}$ d. 3 a. $\sqrt{27}$ b. $3\sqrt{3}$ 51. If x = 1 is a common root of $ax^2 + ax + 2 = 0$ and $x^2 + x + b = 0$, then ab = 0i. 2 I. 3 i. 1 k. 4 52. AP and PQ are tangents drawn from a point A to a circle with centre O and radius 9 cm. If OA = 15 cm then AP + AQ =e. 12 cm f. 18 cm g. 24 cm h. 36 cm 53. If (x, 2), (-3, -4), (7, -5) are collinear, then x =e. 60 f. 63 q. - 63 h. - 60 54. If 35 is removed from the data : 30,34,35,36,37,38,39,40, then the median increases by e. 2 f. 1.5 h. 0.5 q. 1 55. The polynomial which when divided by $-x^2 + x - 1$ gives a quotient x - 2 and remainder 3 is c. $-x^3 + 3x^2 - 3x + 5$ a. $x^3 - 3x^2 + 3x - 5$ d. $x^3 - 3x^2 - 3x + 5$ b. $-x^3 - 3x^2 - 3x - 5$ 56. The first and last term of an A.P are 'a' and 'l' respectively. If S is the sum of all the terms of the A.P and the common difference is given by $\frac{l^2-a^2}{K-(l+a)}$, then K is e. S f. 2 S h. None of these a. 3 S 57. Sum of 'n' terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots \dots$ C. $\frac{n(n+1)}{\sqrt{2}}$ a. $\frac{n(n+1)}{2}$ b. 2*n* (*n* + 1) d. 1

58. The ratio of the oute	r and inner perimeters	of a circular path is 23	3:22. If the path
is 5 meters wide, the	diameter of the inner of	circle is	
a. 55 m	b. 110 m	c. 220 m	d. 230 m
59.A number <i>x</i> is chose	n at random from the	numbers - 3, -2, -1,0,1	,2,3 the probability
that $ x < 2$ is			
a. $\frac{5}{7}$	b. $\frac{2}{7}$	C. $\frac{3}{7}$	d. $\frac{1}{7}$
60. The different coins a	re tossed simultaneous	ly. The probability of g	etting at least one
head is			
a. $\frac{1}{4}$	b. $\frac{1}{8}$	C. $\frac{3}{4}$	d. $\frac{7}{8}$
61.The length of the sh	nadow of a tower stan	ding on level ground	is found to be $2x$
meters longer when	the suns elevation is 3	30° than when it was 4	45°. The height of
the tower in metres i	S		-
a. $(\sqrt{3} + 1)x$	b. $(\sqrt{3} - 1)x$	c. $2\sqrt{3}x$	d. $3\sqrt{2}x$
62.A sphere of radius 6	cm is dropped into a d	cylindrical vessel partly	filled with water.
The radius of the ve	ssel is 8 cm. If the sp	here is submerged cor	mpletely, then the
surface of the water	rises by	-	
a. 4.5 cm	b. 3 cm	c. 4 cm	d. 2.5 cm
63. The coordinates of th	e point P dividing the l	ine segment joining th	e points $A(1,3)$ and
B(4,6) in the ratio 2 :	1 are		
i. (2,4)	j. (3,5)	k. (4,2)	l. (5,3)
64. If zeros of the polyno	omial $f(x) = x^3 - 3px^2 + $	qx - r are in AP, then	
a. $2p^3 = pq - r$	b. $2p^3 = pq + r$	c. $p^3 = pq - r$ d.	None of these
65. If $\sqrt{5}$ and $-\sqrt{5}$ are tw	o zeroes of the polynoi	mial $x^3 + 3x^2 - 5x - 15$,	then its third zero
is			
e. 3	f. – 3	g. 5	h. – 5
66. The polynomial px^2 +	$qx + rx^4 + 5$ is of type		
a. Linear	b. Quadratic	c. Cubic	d. Biquadratic
67. The value of $\tan 10^{\circ}$ ta	an 15° tan 75° tan 80° is		
e1	f. 0	g. 1	h. None of these
$68.\frac{\cot\theta}{\cot\theta-\cot3\theta}+\frac{\tan\theta}{\tan\theta-\tan3\theta}$	is equal to		
i. 0	j. 1	k. – 1	l. 2
69. If the radius of a circ	le is diminished by 10%	6, then its area is dimin	nished by
a. 10 %	b. 19 %	c. 20 %	d. 36 %
70.A number is selected	at random from the n	umbers 1 to 30. The p	robability that it is
a prime number is			

a. $\frac{2}{3}$ d. $\frac{11}{30}$ C. $\frac{1}{3}$ b. $\frac{1}{6}$ 71. Chlorosis occurs when plants are grown in e. Shade f. Strong sunlight g. Fe – free freedom h. Dark 72. Master endocrine gland is e. Pituitory f. Thyroid g. Parathyroid h. Pineal 73.On seeing a tiger, the heart beat and blood pressure increase due to release of hormone e. Adrenaline f. Thyroxine h. Corticoides g. Parathhormone 74. The absorbed substances finally reach the tissues which utilize them for their activities. This process is called e. Defecation f. Metabolism a. Catabolism h. Assimilation 75. Emulsification of fats by bile juice takes place in i. Liver i. Stomach k. Oesophagus I. Duodenum 76. Muscles attached to diaphragm contract during inspiration to make it b. Dome - shaped a. Flat c. Concave d. Rotate 77. World environment day is b. 5th June c. 1st December d. 16th September a. 11th July 78. In Angiosperms, the sets of sexual reproduction is b. Fruit a. Seed c. Flower d. Embryo 79. Sexually transmitted disease affecting both males and female genitals which often damage eyes of babies born to infected mother a. Syphilis b. Gonorrhea c. Hepatitis d. AIDS 80. Leaves are green because they e. Absorb green light f. Do not absorb green light but reflect green light g. Utilise green light h. Absorb and reflect green light 81. Auxin synthesis occurs in a. Root/Shoot tips b. Cortex c. Xylem d. Phloem cells 82. Which of the following group do not include endocrine gland? a. Pituitary, Pineal, thyroid b. Adrenal, parathyroid, thymus c. pancreas, testis, ovary d. liver, kidney, heart & gastrointestinal tract 83. First portion of small intestine is called b. Ileum c. Duodenum d. Cystic duct a. Jejunum

- 84. Which one secretes anticoagulant
 - a. Mast cells b. Nerve cells c. Adipose cells d. Plasma cells

85. Excretion of dilute urine is due to

- a. More secretion of aldosterone c. Less secretion of glucagons
- b. Less secretion of vasopressin
- d. More secretion of insulin
- 86.Assertion: In sexual reproduction, offsprings are not identical to the parents or amongst themselves.

Reason: Sexual reproduction involves fusion of male and female gametes.

- a. If both assertion and reason are true and the reason is the correct explanation of the assertion.
- b. If both assertion and reason are true but reason is not the correct explanation of the assertion.
- c. If assertion is true but reason is false
- d. If both assertion and reason are false
- 87.A large majority of flowering plants are pollinated by
 - a. Butterflies b. Bees c. Sunbirds d. Beetles
- 88.Ozone hole refers to
 - a. Hole in ozone layers
 - b. Reduction in thickness of ozone layer in stratosphere
 - c. Reduction of thickness of ozone in trophosphere
 - d. Increased concentration of ozone
- 89. Homologous organs are
 - a. Wings of pigeon and butterfly c. Wings of pigeon and arms of humans
 - b. Wings of pigeon and housefly d. Wings of bat, housefly and butterfly

90. The two system that jointly coordinate and regulate the physiological functions of body are

- a. Neural system and circulatory system
- b. Endocrine system and circulatory system
- c. Endocrine system and neural system
- d. Neural system and skeletal system

COCC Best of Luck COCC

SHARADA VIDYANIKETHANA PUBLIC SCHOOL & PU COLLEGE

Devinagara, Talapady , Mangaluru – 23

PRATIBHA PRAVEENA EXAM 2018 - 19

7. A particle starts its motion from rest under the action of a constant force. If the distance covered in first 10 second is s_1 and that covered in the first 20 second is s_2 , then

i. $s_2 = 3s_1$ j. $s_2 = 4s_1$ k. $s_2 = s_1$ l. $s_2 = 2s_1$

- 8. If 240 J of work is done in 2 minutes by a water pump then the power of the pump is
 - i. 240 W j. 2 W k. 2.4 W l. 24 W
- 9. In the below diagram, object distance is

e. Two f. Infinite g. One h. Three 14. In the given circuit power dissipated in the 9 Ω resistor is 36 W. Then potential difference across the 2 Ω resistor is

- f. Fall h. Fall below ⁰C
- 20.A pump can take out 700 kg of water per hour from a well 100 m deep. The power supplied to the pump, assuming its efficiency as 90 % is

a. 216	W b	. 517 W	c.	20	10 W	d. 7	78 W
21.The ele	ment with highes	st electron affinity wil	ll be	elon	g to		
e. Peri	od 2 , group 17		g.	Per	riod 2 , group 18		
f. Peri	od 3, group 17		h.	Per	riod 2 , group 1		
22. Which o	of the following is	a polar molecule?					
a. SiF4		b. XeF4		с.	BF ₃	C	d. SF4
23.What is	the value of elec	ctron gain enthalpy o	f Na	a+ ii	fIE_1 of Na = 5.1	eV?	
i5.1	eV	j10.2 eV		k.	+2.55 eV	I	. +10.2 eV
24. Stainles	s steel is an allo	y of					
e. cop	per f. N	lickel & Chromium		g.	Manganese	I	n. Zinc
25.Oxidati	on numbers of A	A,B,C are +2 , +5 a	nd	-2	respectively. Pos	sible	e formula of
compou	und is						
a. A2(E	3C ₂) ₂	b. A ₃ (BC ₄) ₂		g.	A2(BC3)2	h	A3(B2C)2
26.Calgon	is an industrial n	ame given to :					
m. Nor	mal sodium phos	phate	0.	So	dium hexametap	hosp	hate
n. Soc	lium meta – alum	ninate	р.	Hy	drated sodium al	umin	ium silicate
27.The per	centage of N_2 in	urea is about					
i. 85	j.	46		k.	28	١.	18
28.For rea	ction , 2A + B \rightleftharpoons	2C, K = x. Equilibriu	m c	ons	tant for $C \rightleftharpoons A +$	½ B	will be
m. <i>x</i>	n	$\frac{x}{2}$		0.	$\frac{1}{\sqrt{x}}$	p	\sqrt{x}
29.Photo e	electric effect is r	maximum in					
i. Cs	j.	Na		k.	К	١.	Li
30.Dimer /	Al2Cl6 is formed b	ecause					
i. Al is	electron rich						
j. Alur	ninium is having	lone pair of electron					
k. Alur	ninium forms coc	ordinate bonds with c	hlo	rine	to complete its o	octet	
I. Alur	ninium donates l	one pair to form brid	ge				
31. Which o	of the following a	re the chain isomers	of p	pent	tane?		
a. n-p	entane b	. Isopentane	C.	. N	eopentane	d.	All of these
32.The we	ight percentage o	of NaCl solution is 10	. If	the	weight of solutio	n is	150 grams.
Calcula	te the weight of I	NaCl and water respe	ectiv	/ely			
a. 10 g) and 120 g			c.	15 g and 135 g		
b. 15 g) and 120 g			d.	135 g and 15 g		
33.Numbe	r of structural iso	mers for $C_4H_{10}O$ are					
a. 6	b.	7	C	c. 4	1	d	. 5

34. Which of the following taking place in the blast furnace is endothermic a. $CaCO_3 \rightarrow CaO + CO_2$ c. $C + O_2 \rightarrow CO_2$ d. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ b. $2C + O_2 \rightarrow 2CO$ 35. The first, second, third, fourth, fifth ionization potential values of an element are 6.11, 11.87, 51.21, 67.0, 84.39 eV respectively. The element is e. Calcium f. Potassium h. Carbon q. Aluminium 36. If 6.537 g of zinc reacts with exactly 7.0906 g of chlorine to form the only compound of chlorine and zinc, how much zinc will react with 14.18g of chlorine? a. 11.06 g b. 14.90 g c. 13.07 g d. 12.89 g 37. The pair of compounds having identical shapes for their molecules is i. CH₄, SF₄ j. BCl_2 , CIF_3 k. XeF₂, ZnCl₂ I. SO_2,CO_2 38. Number of neutrons present in 1.7 g of ammonia is i. NA j. N_A/10 x 4 k. (N_A / 10)x7 I. N_A x 10 x 7 39. Which of the following compound has the lowest melting point? i. CaCl₂ j. CaBr₂ k. CaI₂ I. CaF₂ 40. Organosilicon polymers containing Si – O – Si linkage is called e. Silicates f. Silicones q. Glass h. Silica 41. The LCM of two numbers is 1200. Which of the following cannot be their HCF? b. 500 c. 400 d. 200 a. 600 42. If the equation $x^2 - bx + 1 = 0$ has no real roots, then e. -3 < b < 3 f. -2 < b < 2h. b < - 2 q. b > 2 43.A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q such that OQ = 12 cm, Length PQ is j. 13 cm I. $\sqrt{119}$ cm i. 12 cm k. 8.5 cm 44. If PT is tangent drawn from a point P to a circle touching it at T and O is the centre of the circle, then $\ \ \Box OPT + \ \ \Box POT =$ e. 30⁰ f. 60⁰ q. 90⁰ h. 180⁰ 45. If α, β, γ are the zeros of the polynomial $f(x) = ax^3 + bx^2 + cx + d$ then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =$ d. $-\frac{c}{a}$ a. $-\frac{b}{a}$ b. $\frac{c}{d}$ C. $-\frac{c}{d}$ 46. Which one is not a polynomial g. $x^3 - 1$ h. $y^2 + 5y + 1$ e. $4x^2 + 2x - 1$ f. $y + \frac{3}{2}$

47. The next term of the AP $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$

b. √84 d. $\sqrt{112}$ a. $\sqrt{70}$ c. $\sqrt{97}$ 48. If angles A, B, C of a $\triangle ABC$ form an increasing AP, then sin B is b. $\frac{\sqrt{3}}{2}$ d. $\frac{1}{\sqrt{2}}$ a. $\frac{1}{2}$ c. 1 49.2 $(\sin^6\theta + \cos^6\theta) - 3(\sin^4\theta + \cos^4\theta)$ is equal to e. 0 f. 1 g. – 1 h. None of these 50. If the area of a sector of a circle bounded by an arc of length $5 \pi cm$ is equal to $20 \pi cm^2$, then its radius is e. 12 cm f. 16 cm q. 8 cm h. 10 cm 51. If the perimeter of a circle is equal to that of a square, then the ratio of their areas is j. 14 : 11 k. 22:13 I. 11:14 i. 13:22 52. The probability of guessing the correct answer to a certain test questions is $\frac{x}{12}$. If the probability of not guessing the correct answer to this question is $\frac{2}{3}$, then x is e. 2 f. 3 q. 4 h. 6 53. In an equilateral triangle ABC if $AD \perp BC$ then $AD^2 =$ b. $2CD^2$ a. CD^2 c. $3CD^2$ d. $4CD^2$ 54. In a two digit number, the units digit is twice the tens digit. If 27 is added to the number, the digits interchange their places. Then the number is b. 63 d. 46 a. 36 c. 26 55. The maximum volume of a cone that can be carved out of a solid hemisphere of radius r is c. $3 \pi r^3$ a. $3\pi r^2$ b. $\frac{\pi r^2}{2}$ d. $\frac{\pi r^{3}}{3}$ 56. If the distance between the points (4, p) and (1, 0) is 5, then p =k. – 4 I. 0 i. <u>+</u> 4 j. 4 57. If the polynomial $f(x) = ax^3 + bx - c$ is divisible by the polynomial $g(x) = x^2 + bx + c$, then ab = o. – 1 p. $\frac{-1}{c}$ m. 1 n. $\frac{1}{2}$ 58. The lengths of the diagonals of a rhombus are 24 cm and 10 cm, then each side of the rhombus is a. 13 cm b. 12 cm c. 5 cm d. 11 cm 59. A right triangle with sides 3 cm, 4 cm and 5 cm is rotated about the side of 3 cm to form a cone. The volume of the cone so formed is h. $20 \pi cm^3$ e. $15 \pi cm^3$ f. $12 \pi cm^3$ g. $16 \pi cm^3$ 60. The exponent of 2 in the prime factorization of 144 _____

	i. 4	j. 5	k.	6			I. 3
61	.Which of the following	g is not a measure of c	entr	al t	endency?		
	d. Mean	e. Median	f.	Мс	ode	g. St	andard deviation
62	.What should be add	ed to the polynomial :	$x^{2} -$	5 <i>x</i>	+4, so tha	t 3 is	the zero of the
	resulting polynomial?						
	i. 1	j. 2	k.	4			I. 5
63	.The area of a triangle	formed by $(a, b + c)$, $(b + c)$, c +	a),	(c, a+b) is		
	a. $a + b + c$	b. <i>abc</i>	c.	(a ·	$(+ b + c)^2$		d. 0
64	.The first three term	s of an AP respective	ely	are	3y - 1,3y -	+5 an	d 5 y + 1. Then y
	equals						
	e. – 3	f. 4	g.	5			h. 2
65	If $a\cos\theta + b\sin\theta = m$	and $a\sin\theta - b\cos\theta = n$,	the	en a	$^{2} + b^{2}$		
	a. $m^2 - n^2$	b. $m^2 n^2$	c.	n^2	$-m^{2}$		d. $m^2 + n^2$
66	.Two numbers `a' and	'b' are selected succes	sive	ely v	without rep	blacem	ent in that order
	from the integers 1 to	o 10. The probability th	at	a _b is	s an integer	r is	
	i. $\frac{17}{45}$	j. $\frac{1}{5}$	k.	$\frac{17}{90}$			1. $\frac{8}{45}$
67	.The circumference of	a circle is 100 cm. Th	e si	de (of a square	e inscr	ibed in the circle
	is				-		
	a. $50\sqrt{2}$ cm	b. $\frac{100}{\pi}$ cm	c.	$\frac{50\sqrt{2}}{\pi}$	$\frac{1}{2}$ cm		d. $\frac{100\sqrt{2}}{\pi}$ cm
68	A fraction becomes	$\frac{4}{5}$, if 1 is added to	bo	th	numerator	and	denominator. If,
	however 5 is subtra	acted from both nun	nera	tor	and deno	ominat	tor, the fraction
	becomes $\frac{1}{2}$. Then the	e fraction is					
	e. ⁹	f. ³	a.	7			h. ⁵
60	If S denote the sum	of 'n' terms of an AP w	vith	9 firc	t torm a'	and co	9 mmon difference
09	M' such that S_x is ind	on in terms of an Ar V	VICII	111.5			
	a such that $\frac{1}{s_{kx}}$ is ind	ependent of x, then					
	i. $d = a$	j. $d = 2a$	k.	a =	= 2d		l. d = -a
70	A bag contains three.	green marbles, four bl	ue r	nar	bles and tw	vo ora	nge marbles. If a
	marble is picked at ra	indom, then the probab	oility	/ th	at it is not	an ora	ange marble is
	m^{-1}	n. ¹	о.	$\frac{4}{0}$			p. $\frac{7}{2}$
	4	3		9			9
71	Pair of Viral diseases	is		9			3
71	Pair of Viral diseases a. Ring worm , AIDS	is		у С.	Dysentery	v, Con	nmon cold
71	 Pair of Viral diseases a. Ring worm , AIDS b. Typhoid , Tubercu 	is Iosis		с. d.	Dysentery Common	,Con cold,	nmon cold AIDS

a.	$C_6 H_{12} O_6 +$	$60_2 \longrightarrow$	$6CO_2 +$	$6H_20$
----	--------------------	------------------------	-----------	---------

b. $6CO_2 + 6H_2O \xrightarrow{Light} 6CO_2 + 6H_2O$

$$\mathsf{c.} \quad 6CO_2 + 12H_2O \xrightarrow{\text{Light}} C_6H_{12}O_6 + 6O_2 + 6H_2O$$

d.
$$6CO_2 + 10H_2O \xrightarrow{Light} C_6H_{12}O_6 + 6O_2 + 4H_2O$$

73. Read the following statements and find out the incorrect statement

- e. Transpiration pull does not account for the majority of water transport, most plants meet their need by root pressure.
- f. Water loss in liquid phase is called guttation while in vapour phase is called transpiration.
- g. Besides the lose of water vapour in transpiration, exchange of oxygen and carbon dioxide in the leaf also occurs through stomata.
- h. When guard cells become flaccid, stomata closes and if turgid, stomata opens
- 74. Anaerobic respiration takes place in

e.	Ribosome	f. N	lucleus			g.	Vacuole	h.	Cytoplasm
75.In	a protein, amino ac	ids a	re linked by						
a.	Peptide bonds					c.	Hydrogen bonds		
b.	Glycosidic bonds					d.	All of these		
76.Fa	ther of endocrinolog	ıy is							
a.	Einthoven	b	. Addison			c.	Pasteur	d.	Whittaker
77.W	hich one is a wisdom	n teel	th?						
a.	Third molar, four in	n nun	nber		c.	Se	cond molar, four i	n nu	mber
b.	Third molar, two in	num	iber		d.	Se	cond molar, two ir	า ทนเ	mber
78.Ye	llow colour of faeces	s in o	n account of						
a.	Excessive turmeric				c.	De	gradation product	of h	emoglobin
b.	Bile				d.	No	ne of these		
79.Al	veoli become enlarg	ed ar	nd damaged wi	ith	red	uce	d surface area in	heav	vy smokers.
Th	e condition is called								
a.	Silicosis	b.	Emphysema			c.	Asthma	d.	Bronchitis
80.Se	erum is								
i.	Blood minus fibring	ogen		k.	Ly	mp	h		
j.	Lymph minus corp	uscle	S	١.	Bl	ood	l minus corpuscles	anc	l fibrinogen
81.Ca	nrbohydrate digestio	n beg	jins in						
i.	Stomach	j.	Mouth		k.	Int	testine I.	Al	l of these

82. In flowering plants, meiosis takes place during

	i	a. Pollen grain formation		c. Gamete formation
		b. Seed formation		d. Seed germination
83.	Gre	en house effect is related to		
	a. 1	Increased growth of green algae	с.	Cultivation of vegetables in houses
	b.	Global warming	d.	Development of terrace gardens
84.	Woi	mb is the another name of		
	a. '	Vagina b. Cervix	с.	Oviduct d. Uterus
85.	Car	nivores represent		
	a.	Primary consumer	с.	Secondary consumer
	b. 3	Secondary and tertiary consumer	d.	Reducers
86.	Urir	ne flows into ureters from		
	e.	Kidney febris	g.	Urethra
	f.	Urinary bladder	h.	Collecting ducts
87.	Cat	tle are able to digest cellulose which	humans	cannot because cattle have
	a.	Cellulose digesting bacterias	с.	Large stomach
	b.	More efficient digestive system	d.	Long intestine
88.	Hor	mone act on		
	a.	Organ systems	с.	Target organs
	b.	Cells	d.	Cell receptors
89.	Pulr	nonary artery drains deoxygenated	blood fro	m
	a.	Right ventricle	с.	Left atrium
	b.	Right atrium	d.	Left ventricle
90.	One	e of the following movements is not o	complete	ly involuntary. It is
	a.	Peristalsis	с.	Dilation of eye pupil
	b. 1	Systole of ventricles	d.	Deglutition

30000 Best of Luck 00000

SHARADA VIDYANIKETHANA PUBLIC SCHOOL & PU COLLEGE

Devinagara, Talapady , Mangaluru – 23

PRATIBHA PRAVEENA EXAM 2018 - 19

- Light is travelling from medium A to medium B. Where refractive index of B is 1.3.
 For some angle of incidence light is completely reflected back to the same medium.
 The refractive index of A is
 - m. 1 n. 1.2 o. 1.7 p. 1.25
- 2. Focal length of convex lens is 15 cm. When exactly half of the lens is covered with non transparent material, then new focal length will be
 - i. 30 cm j. 10 cm k. 45 cm l. 15 cm
- 3. Which of the following statement (S) false for a particle moving in a circle with constant angular speed
 - m. The acceleration vector points to the centre of the circle
 - n. Velocity vector points to the centre of the circle
 - o. Velocity vector is tangent to the circle
 - p. Acceleration vector is tangent to the circle
- 4. Inside diamagnetic material number of magnetic field lines
 - i. Greater than outside
 - j. Equal to outside
 - k. Less than outside
 - I. No magnetic field lines
- 5. Find direction of magnetic field at X when current direction at Y is outward.
 - i. Inward

•^x i. Outward

k. Up

I. Down

6. In which case mutual inductantion is more

i. A

k. Mutual inductance is same is A and B

j. B

I. Mutual inductance is zero in both the cases

- 7. Body is thrown vertically upwards. In upward motion velocity and acceleration are in
 - e. Same direction g. Opposite direction
 - f. Perpendicular to each other h. Velocity makes 45^o with acceleration
- 8. If 240 J of work is done in 2 minutes by a water pump then the power of the pump is
 - m. 240 W n. 2 W o. 2.4 W p. 24 W
- 9. The total current supplied to the circuit by the battery is

- m. Expand
- n. Contract
- o. Expand or contract depending upon the width of the ring
- p. Not change in size
- 13. Principle of " method of mixture" is based
 - m. Conservation of energy
 - n. Conservation of momentum
 - o. Conservation of number of particle
 - p. Conservation of linear momentum
- 14. When luminous point source is present inside water. From water to air light will pass through
 - i. Circular area k. Cubical area
 - j. Rectangular area I. Throughout the surface of water
- 15.If angle between two plane mirrors is zero and source is in between the plane mirror. Then infinite number of images are formed. Then in the below combination total number of images are

			Sou M	irce			
				F M2	r		
i.	Тwo	j.	Infinite	k.	One	١.	Three
16.If	$360^{0} = 2\pi$ radian,	then	angular speed of r	minu	ite hand of cloc	k is	
е	. 0.105 rad sec ⁻¹			g.	0.207 rad sec	-1	
f.	0.00174 rad sec	1		h.	0.3127 rad se	C⁻¹	
17.C	onductors can be cl	nang	ed by three metho	d th	at is		
ii.	Friction		ii. Conduction		iii. In	ductior	I
A	n insulator can be	char	ged by				
i.	Only friction			k.	Only Induction	ו	
j.	Only conduction			١.	Both conduction	on and	friction
18.If	a 30 V, 90 W bulb	is to	be worked in 120	V li	ne, the resistar	nce to b	e connected in
se	eries with the bulb i	S					
i.	20 Ω	j.	10 Ω	k.	40 Ω	١.	30 Ω
19.B	y mistake a voltme	ter i	s connected in ser	ies a	and an ammete	er in pa	rallel when the
ci	rcuit is switched on						
e.	Both ammeter an	d vo	ltmeter will be dan	nage	ed		
t.	Neither the amme	eter 	nor the voltmeter v	WIII	be damaged		
g.	Only the ammete	r wil	I be damaged				
ח. סס דר	Only the voltmete	er wi	II be damaged				
20.11 i	Higher to lower p	oton					
ı. i	Lower to higher p	oten					
j. k	Electrons are not	flow	ing inside battery				
к. 	None of these	110 11	ing inside battery				
21.FI	ka – aluminium and	l Eka	a – silicon are know	/n as	5		
m	. Gallium and Gern	nanii	Jm	0.	Iron and Sulph	านท	
n	Aluminium and Si	licor	1	р.	Boron and Tec	hnitiun	า
22.TI	ne angular moment	um	of electron in <i>d</i> orb	ital	is equal to		
i.	2√3 h	j.	0 h	k.	√6 h	١.	$\sqrt{2}$ h

23.V	Which one of the fo	llowing orders is not	in a	accordance with th	e p	roperty stated
a م	$\int B_{2} \times C_{12} \times Br_{2} \times C_{12}$	In: hand dissociation er	ora	W		
f.	$F_2 > C1_2 > Br_2 > 1_2$	I2: oxidizina power	icig	Ŷ		
g	. HI > HBr > HCl >	HF : acidic property in	wa	ter		
h	. $F_2 > Cl_2 > Br_2 > I_2$	2: electronegativity				
24.V	Which process of puri	ification is represented 1400° -1400°	by '	the following schem	ıe?	
 ;	$I(Impure) + 2I_2 - Cupellation$	\rightarrow III ₄ \longrightarrow II(pure) +	12 1/2	alactrolytic rofining	~	
۱. i	poling		к. І	Van-Arkel process	J	
25.№	alachite ore has			Van Arker process		
i.	Cu	j. Mg	k.	Ag	١.	AI
26.5	.6 L of oxygen at NT	P is equivalent to –				
а	. 1 mole	b. $\frac{1}{2}$ mole	c.	$\frac{1}{4}$ mole	d.	$\frac{1}{8}$ mole
27.F	or a real gas, Z show	WS				
а	. Z < 1, gas is less	compressible	c.	$Z = \infty$, for an ide	al g	as
b	. Z > 1, gas is more	e compressible	d.	$PV \neq nRT$, for rea	l ga	S
28.R	eaction between foll	owing pairs will produc	e b	y hydrogen except		
n	n. Cu + HCl	n. Fe + H_2SO_4	0.	Mg + Steam	p.	Na + alcohol
29.⊦	lousehold gaseous fu	uel (LPG) mainly contai	ns			
n	n. CH₄	n. C ₂ H ₂	0.	C_2H_4	p.	C_4H_{10}
30.T	he compound A on	heating gives a colour	less	gas and residue t	hat	is dissolved in
v	vater to obtain B. e	xcess of CO ₂ is bubble	ed t	hrough aqueous so	oluti	ion of B , C is
fo	ormed which is recov	vered in the solid form	. So	lid C on gentle hea	ting	gives back A.
t	he compound is					
i.	Na ₂ CO ₃	j. K ₂ CO ₃	k.	CaSO ₄ .2H ₂ O	١.	CaCO ₃
31.T	he products obtaine	d on heating LiNO ₃ will	b			
e	. LiNO2+ O2	f. Li ₂ O+NO ₂ +O ₂	g.	Li ₃ N+O ₂	h.	Li ₂ O+NO+O ₂
32.T	he compound that is	s not a lewis acid is				
i.	BF₃	j. AICI3	k.	PCl ₃	١.	SnCl₄
33.T	he gas released duri	ing the reaction of met	al ca	arbonates with dilut	e a	cids is:
а	. SO ₂	b. NO ₂	c.	Cl ₂	d.	CO ₂
34.I	f a saturated solution	n is heated, it				
e	. Changes to unsatu	uration				
f.	Changes to super	saturation				
g	. Remains same					
h	. Till 50°C, changes	to unsaturation and th	nen	super saturation		

35. The volume of oxygen required for the complete combustion of 4 lit of ethane is a. 4 lit b. 8 lit c. 14 lit d. 12 lit 36. Which of the following taking place in the blast furnace is endothermic e. $CaCO_3 \rightarrow CaO + CO_2$ q. $C + O_2 \rightarrow CO_2$ f. $2C + O_2 \rightarrow 2CO$ h. Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂ 37. The molecule which has zero dipole moment is i. CH_2Cl_2 j. BF₃ k. NF₃ I. CIO_2 38. Which concept best explains the fact that o-nitrophenol is more volatile than p-nitrophenol? i. Resonance k. Hydrogen bonding j. Hyperconjugation I. Steric hindrance 39. Calculate the initial volume if a sample of gas at 75 C is changed to 1.50 L at 25 C at constant pressure. k. 1.85 L l. 1.65 L i. 1.75 L j. 1.95 L 40. If 6.537 g of zinc reacts with exactly 7.0906 g of chlorine to form the only compound of chlorine and zinc, how much zinc will react with 14.18g of chlorine? e. 11.06 g f. 14.90 g g. 13.07 g h. 12.89 g 41. The exponent of 2 in the prime factorization of 144 _____ b. 5 a. 4 c. 6 d. 3 42. If $ax^2 + bx + c = 0$ has equal roots, then c =C. $-\frac{b^2}{4a}$ b. $\frac{b}{2a}$ d. $\frac{b^2}{4a}$ a. $-\frac{b}{2a}$ 43. The distance between the points $(\cos \theta, \sin \theta)$ and $(\sin \theta, -\cos \theta)$ is i. $\sqrt{2}$ k. 2 I. 3 i. $\sqrt{3}$ 44. The area of a triangle formed by (a, b + c), (b, c + a), (c, a + b) is k. $(a + b + c)^2$ i. a + b + cj. abc I. 0 45.PQ is a tangent drawn from a point P to a circle with centre O and QOR is the diameter of the circle such that $\ \ POR = 120^{\circ}$, then $\ \ OPQ$ is m. 60⁰ n. 45⁰ o. 30⁰ p. 90⁰ 46. Which of the following is not a measure of central tendency? h. Mean i. Median i. Mode k. Standard deviation 47. If the mean of first n natural numbers is $\frac{5n}{q}$, then n =i. 5 k. 9 j. 4 I. 10 48. If the polynomial $f(x) = ax^3 + bx - c$ is divisible by the polynomial $g(x) = x^2 + bx + c$, then ab =r. $\frac{1}{c}$ q. 1 t. $\frac{-1}{c}$ s. – 1

49. What should be added to the polynomial $x^2 - 5x + 4$, so that 3 is the zero of the resulting polynomial? n. 2 m. 1 o. 4 p. 5 50.Let Sn denote the sum of 'n' terms of an AP whose first term is 'a'. If the common difference 'd' is given by $d = S_n - kS_{n-1} + S_{n-2}$, then k is i. 1 k. 3 I. None of these j. 2 51. If the sum of p' terms of an AP is q' and the sum of q' terms is P, then the sum of p + q terms will be C. p + qd. -(p + q)a. 0 b. *p* – *q* 52. If $\frac{5+9+13+\dots+n \ terms}{7+9+11+\dots+to \ (n+1) \ terms} = \frac{17}{16}$, then *n* is q. 8 s. 10 t. 11 53. If $A + B = 90^{\circ}$, then $\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}$ is equals to a. $\cot^2 A$ b. $cot^{2}B$ C. $-\tan^2 A$ d. $-\cot^2 A$ 54. If angles A, B, C of a $\triangle ABC$ form an increasing AP, then sin B is h. $\frac{1}{\sqrt{2}}$ f. $\frac{\sqrt{3}}{2}$ e. 🗄 g. 1 55. If $3\cos\theta = 5\sin\theta$, then the value of $\frac{5\sin\theta - 2sec^{3}\theta + 2\cos\theta}{5\sin\theta + 2sec^{3}\theta - 2\cos\theta}$ is 316 2937 e. $\frac{271}{979}$ g. $\frac{31}{2937}$ h. None of these 56. If $a\cos\theta + b\sin\theta = m$ and $a\sin\theta - b\cos\theta = n$, then $a^2 + b^2$ a. $m^2 - n^2$ b. $m^2 n^2$ C. $n^2 - m^2$ d. $m^2 + n^2$ 57. The radius of a circle is 20 cm. It is divided into four parts of equal area by drawing three concentric circles inside it. Then, the radius of the largest of three concentric circles drawn is m. $10\sqrt{5}$ cm n. $10\sqrt{3}$ cm o. 10 cm p. $10\sqrt{2}$ cm 58. If the difference between the circumference and radius of a circle is 37 cm, then using $\pi = \frac{22}{7}$, the circumference (in cm) of the circle is I. 7 i. 154 j. 44 k. 14 59. If the sum of the areas of two circles with radii r_1 and r_2 is equal to the area of a circle of radius 'r', then $r_1 + r_2$ a. > r^2 b. $= r^2$ C. $< r^2$ d. None of these 60. If the area of a circle is equal to the sum of the area of two circles of diameters 10 cm and 24 cm, then diameter of the larger circle (in cm) is i. 34 j. 26 k. 17 I. 14

61	.If th is	ne perimeter of a	circ	le is equal to that o	of a	square, then the r	atio	of their areas
	m. 1	13:22	n.	14:11	0.	22:13	p.	11:14
62	. If a the	number x is chosen numbers 1,4,9. The	sen en,	from the numbers $P(xy < 9)$	1,2	,3 and a number 'y	י∕ is	selected from
	a. $\frac{7}{9}$	7 	b.	<u>5</u> 9	c.	$\frac{2}{3}$	d.	<u>1</u> 9
63	.The	probability of gu	essi	ing the correct ans	we	r to a certain test	que	stions is $\frac{x}{12}$. If
	the	probability of not	gue	essing the correct a	nsv	ver to this question	is ² / ₃	, then x is
	i. 2	2	j.	3	k.	4	١.	6
64	.Two	different coins ar	e to	ossed simultaneous	ly.	The probability of g	ettii	ng at least one
	head	d is						
	i. $\frac{1}{4}$	<u> </u> -	j.	$\frac{1}{8}$	k.	$\frac{3}{4}$	١.	<u>7</u> 8
65	.The	different coins are	e to	ssed simultaneous	y.	The probability of g	ettir	ng at least one
	head	d is						
	i. $\frac{1}{4}$	 _	j.	$\frac{1}{8}$	k.	<u>3</u> 4	١.	<u>7</u> 8
66	.In a	$\Delta ABC, \sqcup A = 90^{\circ},$	AB	= 5 cm and AC = 1	2 c	m . If $AD \perp BC$, then	n AD	=
	e. 1/2	$\frac{13}{2}$ cm	f.	$\frac{60}{13}$ cm	g.	$\frac{13}{60}$ cm	h.	$\frac{2\sqrt{15}}{13}$ cm
67	.The	length of the sh	ado	w of a tower stan	din	g on level ground	is f	found to be $2x$
	met	ers longer when t	the	suns elevation is 3	8 0 0	than when it was 4	45º.	The height of
	the	tower in metres is	5					
	e. ($(\sqrt{3}+1)x$	f.	$(\sqrt{3}-1)x$	g.	$2\sqrt{3}x$	h.	$3\sqrt{2}x$
68	.A fr	action becomes	$\frac{4}{5}$	if 1 is added to	bo	oth numerator and	de	nominator. If,
	how	ever 5 is subtra	acte	d from both num	nera	ator and denomina	ator	, the fraction
	beco	omes $\frac{1}{2}$. Then the	e fra	iction is				
	i. $\frac{9}{7}$	<u>)</u>	j.	$\frac{3}{7}$	k.	<u>7</u> 9	١.	<u>5</u> 9
69	.A re	ectangular sheet o	of p	aper 40 cm x 22 c	m	is rolled to form a	holl	ow cylinder of
	heig	ht 40 cm. The rac	lius	of the cylinder is				
	i. 3	3.5 cm	j.	7 cm	k.	$\frac{80}{7}$ cm	١.	5 cm
70	.A rig	ght triangle with s	ide	s 3 cm , 4 cm and 5	5 cr	n is rotated about t	he s	side of 3 cm to
	form	n a cone. The volu	ime	of the cone so form	nec	lis		
	i. 1	$15 \pi cm^3$	j.	$12 \pi cm^3$	k.	$16 \pi cm^3$	١.	$20 \pi cm^3$
71	.Gen	etic material with	out	nuclear membrane	is	found in		
	i. E	Bacteria and Myco	plas	sma	k.	Archaebacteria and	Blu	ie green algae
		Vanohacteria and	l Ba	cteria	I I	All of these		

72. Correct equation for photosynthesis is

e. $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O_2$ f. $6CO_2 + 6H_2O \xrightarrow{Light} 6CO_2 + 6H_2O$ g. $6CO_2 + 12H_2O \xrightarrow{Light} C_6H_{12}O_6 + 6O_2 + 6H_2O$ h. $6CO_2 + 10H_2O \xrightarrow{Light} C_6H_{12}O_6 + 6O_2 + 4H_2O$ 73. Leaves are green because they m. Absorb green light n. Do not absorb green light but reflect green light o. Utilise green light p. Absorb and reflect green light 74.In plants, glucose is derived from sucrose, which is the end product of photosynthesis or from storage carbohydrates. Sucrose is converted into glucose and fructose by the enzyme k. Sucrase i. Zymase j. Hexokinase I. Invertase 75. Shock movements of leaves of sensitive plants Mimosa pudica are n. Seismonasty o. Hydrotropism p. Chemonasty m. Thermonasty 76. Enzymes are basically made of q. Nucleic acids r. Proteins s. Fats t. Vitamins 77. The hypothalamic hormones regulate the synthesis and secretion of a. Thyroid hormone c. Adrenal hormones b. Parathyroid hormone d. Pituitary hormones 78. On seeing a tiger, the heart beat and blood pressure increase due to release of hormone a. Adrenaline b. Thyroxine c. Parathhormone d. Corticoides 79. Which one is a wisdom teeth? e. Third molar, four in number g. Second molar, four in number f. Third molar, two in number h. Second molar, two in number 80. Muscular contractions of alimentary canal are a. circulation b. Deglutition c. Churning d. Peristalsis 81. Which gland does not take part in saliva production i. Parotid k. Submucosal I. Sublinguals j. Submaxillary 82. A molecule of haemoglobin carries how many oxygen molecules n. 2 o. 3 m. 1 p. 4 83. The life of the erythrocytes in mammalian blood is about b. 150 days a. 120 days c. 190 days d. 180 days

- 84. Urine flows into ureters from
 - a. Kidney febris b. Urinary bladder c. Urethra d. Collecting ducts
- 85.Assertion: In sexual reproduction, offsprings are not identical to the parents or amongst themselves.

Reason: Sexual reproduction involves fusion of male and female gametes.

- e. If both assertion and reason are true and the reason is the correct explanation of the assertion.
- f. If both assertion and reason are true but reason is not the correct explanation of the assertion.
- g. If assertion is true but reason is false
- h. If both assertion and reason are false
- 86. Double fertilization is fusion of
 - a. Two eggs
 - b. Two eggs and polar nuclei with pollen nuclei
 - c. One male gamete with egg and other with synergid
 - d. One male gamete with egg and other with secondary nucleus
- 87. Ozone hole refers to
 - e. Hole in ozone layers
 - f. Reduction in thickness of ozone layer in stratosphere
 - g. Reduction of thickness of ozone in trophosphere
 - h. Increased concentration of ozone
- 88. Carnivores represent
 - e. Primary consumer g. Secondary consumer
 - f. Secondary and tertiary consumer h. Reducers
- 89. Womb is the another name of
 - e. Vagina f. Cervix g. Oviduct h. Uterus
- 90. Fossil man expert in making cave paintings and tools was
 - a. Cro Magnon man c. Java Man
 - b. Peking Man d. Neanderthal Man

COCC Best of Luck COCCC